

제 출 문

해수담수화 플랜트 저전력/저비용 운영관리 지능형 플랫폼 기술개발

Development of the O&M platform technology for low-energy and low-cost seawater desalination plant

2019.1

사장 귀하

이 보고서를 2018년도 K-water융합연구원 스마트워터연구소에서 수행한 "해수담수화 플랜트 저전력/저비용 운영관리 지능형 플랫폼 기술개발"의 3차년도 연구보고서로 제출합니다.

2019. 1. 31

연구책임자	K-water연구원	수석연구원	임재림
연구수행자	K-water연구원	연구위원	김충환
	K-water연구원	책임연구원	이경혁
	K-water연구원	책임연구원	이영주
	K-water연구원	선임연구원	유영범
	K-water연구원	선임연구원	김지혜
겸직연구원	K-water연구원	지원위원	강병재
	광주수도관리단	부장	김종신
	맑은물기획처	부장	하광우
	서산권지사	차장	안대기
	서산권지사	차장	전은주
	맑은물기획처	차장	이종권
	수도권수도사업단	차장	김지웅
	인재경영처	차장	손영철
	맑은물기획처	과장	김경완
	아산권지사	과장	안광택
	K-water연구원	선임위원	권병수
	K-water연구원	대리	김대욱
위촉연구원	K-water연구원	연구원	이정민
	K-water연구원	연구원	김동현
	K-water연구원	연구원	김지수
	K-water연구원	연구원	임윤수

연구개발결과 활용보고서

	[과제번호: ZTUDE_UUUDC_19_10]										
[. K () () () () () () () () () () () () ()	(1)연구과제명	해수담수화 플린	1트 저전력/저비용 기술개발(3차	운영관리 지 년도)							
				성명	임재림						
		K-water융합연구원		소속	응형 플랫폼 임재림 망운물연구소 042-870-7500 jllim@kwater.or.H 805.000천원 (당해연도) 105.000천원 (당해연도) 22명/1년						
	(2)수행부서	맑은물연구소	(3)연구책임자	전화번호	042-870-7500						
				E-mail	jllim@kwater.or.k						
	(4)연 구 기 간	2018. 1 . ~ 2018. 12. (초 12 개원)		총액	805,000천원 (다체여드)						
	[내카세면 전 오· KWE-WWKC-18-10] (1)연구과제명 해수담수화 플랜트 저전력/저비용 운영관리 지 기술개발(3차년도) (2)수행부서 K-water융합연구원 방은물연구소 성명 (3)연구책임자 (4)연 구 기 간 2018.1.~ 2018.12, (총 12 개원) 종액 (6)협 동 기 관 광주과학기율원, 국민대학교 (5)총연구개발비 (천원) 정부 (7)참 여 기 업 ㈜프라일텍인터내쇼날 (5)총연구개발비 (천원) 정부 (7)참 여 기 업 ㈜프라일텍인터내쇼날 (5)총연구관 3 (10)연구개발목표 - 국내 T/B 전처리 대안공정 운영인자 확보 - - 국내 T/B 전처리 대안공정 운영인자 확보 - 1 - · 국내 T/B 전처리 대안공정 운영인자 확보 - 2 - · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	정부	(8011년도)								
		(영애연도) 105,000천원 (다헤여드)									
1. 연구 괄		: 상수도	(9)참여 연구원		(항애연도) 22명/1년						
	(10)연구개발목표										
1. 연구 총괄	 해수담수화 응 해수담수화 응 당수화 공정 고압펌프 이경 (11)주요연구내용 국내 T/B 전 원수 수질다 국내 T/B D 전전처리수 해수담수화 응 국내 T/B 등 해수담수화 응 당수화 공정 해수담수화 응 당수화 공정 해수담수화 응 도압펌프 이경 국내 T/B 등 고압펌프 이경 국내 T/B 등 	운영프로그램 수정·보 운영프로그램 시운전 수압시스템 및 에너: 상진단 및 해수당수플 처리 대안공정 운영인 처리 대안공정 운영인 AF 운전 DB 활용하 수질변화 대응 침지 운영프로그램 수정·보 2 전 DB 활용 전처리 공정 운영 프로그램 시운전 수압시스템 및 에너: 플랜트 규모별 수압 플랜트 규모별 수압 플랜트 규모별 우압	완 및 모듈 추가) 지 사용량 예측기술 :랜트 자산관리 로: 긴자 확보 :건 도출 여 DAF 공정 모델 식UF 최적 운영조; 완 및 모듈 추가) 대응공정 에너지 네 펌프 이상진단 및 지 사용량 예측기술 시스템 해석 소프트 에너지 맵핑 로직 :랜트 자산관리 로 정유량 방식 RO공	에 작 2 개발 직 구축 검·보정 건 도출 에 작 소모 분석 실 자산관리 플 개발 플웨어 개발 패발 지 구축 적 모델 파	모듈 추가 구 ³ 라미터 최적화						
	- 해수담수플	팬트 자산관리 로직	ㅋㅋ 이영 전한 월드 구축	쓰니금 개월							

	(12) 연구	구결과의	활용									
			기술	물실용화			교육 및			설계기	준,	
	구분	실용화 실용화 실		H 실용	·화 즈rlı	-화 선행		도	정책활	용 시방서 지친에 :	†, 화용	기타
2		완뇨	수신공	- 모슈()	रुए)	연구				1 12 11	20	
9. 연구	기타를 선택	i 한 경우	 구체적 확	<u></u> 활용실적 기	재							
성과												
활용 이처	(13) 주 9	여구성]과 및 :	기숙 개빅	다계							
म ७ पू	·기 술 명	:		16 16								
주요							술의 \ 초, 탐·	완성. 색연	노 구단계	(), 응용	연구	단계 (),
연구	∘기술특성	:				개발연구단계 () 개포가 하는 가						
성과							입와 1	5-01,	년계 (), '상눔와	완뇨	.단계 ()
						◎기술 수명주기 고스패너 거리고 () 고스 사회고 ()						()
						기물개념 성립기 (), 기물 실명기 () 기술적용 시작기 (), 기술적용 성장기 (○)						
						7]*	술적용	성	숙기 (), 기술적-	용 쇠	퇴기 ()
-	(14) 현장적용실적											
	0	공사명 공사기간		기간	물 (초·	}량 문량)	발	주기관	시공기관	차	R&D 여자 연화	
	공사현장						20/					1.1 15
	정보											
		가. 현	장명									
		구	분	기 존 (A)	개 식 (B)	<u>ને</u> ા (단위효 C=A-	과 B)	현장 총물량 (D)	향상도		적용현장 총효과 (C×D)
3.		공/ (백만	아비 원/m²) ¹						((, _ /
경제석 효과	2	유지곡 (백만4	관리비 원/m²) ¹									
	공사 현장별	기타비 (백만*	용절감 원/㎡) ¹									
	적용효과	사크 (명/	고율 'UC)									
		고 (명/	용 (UC)									
		공 (일/	7] ′UC)									
		내 - (소	구성 手)									

	(15) 기록	술개발목표	. 달성도	i.									
	구분	지표명	개빌	전	당개발사	업	개빌	날결과	현;	재국내	ķ	ㅔ계 최고	
4. 기술적 효과	, <u> </u>	(단위)	국내	수준	최종목표	치	실제	달성치	7]*	기술수준		기술수준	
	기술												
	성능												
	지표												
	(16) 산 ^c	넙재산권 (발명특	허·실용	신안·의장·	s/w)						
	구분	명추	3	출원국	출원 및	출원 및 출원		5원 [코 아파	~		등	등록	
·	l	역삼투 전	단모듈	<u> </u>	<u> </u>	물	·원일	술원면	오	등폭일	-	궁족면오	
4.	특허	모니터링을 화학세기 막교체 예측법	고니터링을 통한 화학세정 및 막교체시기 예측방법		한국수 자원공 사	20	18.10	10-20 -01303	18 334				
	특허	예측방법 담수 생산을 위한 이차전지 및 이를 포함하는 담수화 장치		대한 민국	울산과 학기술 원	20	18.10	10-2018 -0129812					
기술적 효과	특허	막여과 회복세정 시기 예 ^클	공정 수행 두 방법	대한 민국	한국수 자원공 사 국민대 학교	20	18.11	10-20 -01373	18 327				
	특허	현장에서 직접 제조한 살균제로 역삼투막을 살균처리하는 바버 및 자치		대한 민국	㈜프라 임텍인 터내쇼 날	20	18.11	10-20 -01327	18 743				
	특허	농축수 순환 해수담수 ³ 및 방법	최적 형 화 장치 (안)	대한 민국	㈜대우 건설	20	18.12	_					
	특허	정유량 역삼투 등 운영비 (통한 분 세정 및 시점 결정 시스	방식 공정의 난정을 리막 교체 5 지원 템	대한 민국	광주과 학기술 원	20	18.12	_					

					-						
	소프트 웨어	다중선형회귀분 석 기반 가압부상(DAF) 최적 운영 프로그램 ver.2.0	대한 민국	한국수 자원공 사						2018.07	C-2018- 017963
	소프트 웨어	역삼투막 종류 및 베셀수를 고려한 역삼투 최적설계 프로그램	대한 민국	한국수 자원공 사						2018.10	C-2018- 029551
	소프트 웨어	역삼투 해수담수화 배관해석 프로그램	대한 민국	국민대 학교						등록예정	-
	소프트 웨어	정유량 방식 역삼투 공정의 운영비 산정을 통한 분리막 세정 및 교체 시점 결정 지원 프로그램	대한 민국	광주과 학기술 원						2018.10	C-2018- 029277
	소프트 웨어	머신러닝을 이용한 역삼투 분리막에서의 막 오염 예측 프로그램	대한 민국	광주과 학기술 원						2018.10	C-2018- 029276
	(17) 건석	철신기술 지정									
		명 칭		출 원	일	고	시	일 년	친호기간	지경	d번호
	(18) 7]E	타 등록 및 지정현	황(상품	틈, 서비=	스 등	·록,	ΚT	` 마	크 등)		
		명 칭		출 원	일	고	시	일 (보호기건	<u>}</u> 기	타
	(10) ユ,	비히 거므하스키 -	यो न ो								
	그빈	미의 인민역할의 / 도모네	미기		7	하스	7) P	1	구며	토귀 ㅎ	দে হা
5. 학술적 효과	[★] 분 SCI 학술지	A simulation s new performan pressure-retar processes hyb seawater reven and membrane	tudy w ce inde ded os: ridized rse osr distill	vith a ex for mosis with nosis ation	De	4ई sali	시명 nati	on	* 명 네덜 란드	87년, 호 0011- 9164	번,월 2018.10
									1		1

	SCI 학술지	Energy reduction strategies for reverse osmosis based on pressure retarded osmosis: A review mainly focusing on simulation and modeling studies	Des	salination	네덜 란드	_	-	심사중
-	SCI 학술지	Evaluating the effects of organic matter bioavailability on nanofiltration membrane using real-time monitoring	Jo Me	urnal of embrane science	미국	037 738	실사 3- 18 2018.0 8- 17 2018.0 실사 실사 신사 실사 신사 실사 신사 실사 2018.03 2018.03	2018.02
	SCI 학술지	Evaluation of fouling in nanofiltration for desalination using a resistance-in-series model and optical coherence tomography	Sc Tł Env	ience of ne Total vironment	미국	004 969	18- 97	2018.11
	SCI 학술지	Comparison of Statistical Methods to Predict Fouling Propensity of Microfiltration Membranes for Drinking Water Treatment	De: an tr	salination Id water eatment	영국	_	-	심사중
	SCI 학술지	Prediction of fouling in a pilot-scale microfiltration plant using model tree for drinking water treatment	Des an tr	salination d water eatment	여국 -		심사중	
	SCI 학술지	Ultrasonic-assisted cleaning for inorganic scales on high salinity wastewater treatment using membrane distillation	Des an tr	salination Id water eatment	영국	_	-	심사중
-	SCI 학술지	Application of Membrane Distillation in the Management of Thermal Effluents from Power Plants	Des an tr	salination d water eatment	영국	_	-	심사중
	SCI 학술지	Comparison of physical cleaning techniques for membrane distillation: Temperature Reversal, Air sparging and Ultrasonication	Des an tr	salination Id water eatment	영국	_	-	심사중
_	SCI 학술지	Comparison of scale formation between inside-out and outside-in hollow fiber membrane distillation (MD) modules	Des an tr	salination d water eatment	영국	_	-	심사중
	(20) 학	술회의 발표						
		논문제목		학술회의	명칭	국 명	연	도·호
	원수 수	질변화 대응 DAF 공정 운영 최 모델 개발	적화	한국물환7 회·대한상1 도학회 20 공동학술특 회	성학 하수 18년 발표	대한 민국	2	2018.03

해수담수화 RO공정의 전처리공정으로서의 DMF 및 UF공정 비교	한국물환경학 회·대한상하수 도학회 2018년 공동학술발표 회	대한 민국	2018.03
해수담수화 농축수 확산영향 및 회석방류 효과 분석	한국물환경학 회·대한상하수 도학회 2018년 공동학술발표 회	대한 민국	2018.03
압력지연삼투 및 하이브리드 공정 성능평가	2018 한국막학회 춘계 총회 및 학술발표회	대한 민국	2018.05
K-water's efficient operation strategy for desalination plant	International Desalination Workshop 2018	싱가폴	2018.07
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2018 한국막학회 추계 총회 및 학술발표회	대한 민국	2018.11
유입수질 변화에 따른 DAF 공정 최적 운영조건 제안	대한환경공학 회 국내학술대회	대한 민국	2018.11
UF 공정 운영 데이터 기반 TMP 및 CIP 시점 예측	대한환경공학 회 국내학술대회	대한 민국	2018.11
막증발법에서 스페이서 유무에 따른 무기물 스케일 형성 비교	대한공업화학 회	대한 민국	2018.10
막 증발법 공정에서 소수성 멤브레인의 막 젖음 예측 기술 개발	대한공업화학 회	대한 민국	2018.10
저온 조건의 정삼투 공정에서의 CaSO4 스케일 형성 메커니즘과 안티스케일런트를 이용한 저감 효과 분석	대한공업화학 회	대한 민국	2018.11
Decision support system for membrane cleaning in reverse osmosis process using a hybrid machine learning algorithm	1st International Conference on Water Security	캐나다	2018.06
Optimization of the Sequence of Membrane Cleaning in Reverse Osmosis Process Based on Numerical Study	Desalination for the Environment: Clean Water and Energy	그리스	2018.09
Characterizing the fouling potential of brackish water organic matters through dissolved organic matter fractionation	한국물환경학 회· 대산상하수도 학회 2018년 공동학술발표 회	대한 민국	2018.03

	Organic mati understanding fo	ter characteriza uling potentials water	tion for of brackis	The V Cong Adva C Envir , Ma Re	e 2018 Vorld gress on anced in Civil, onmental and terials search	대한 민국 (국제	)	2018.08	
	Evaluating mem dissolved organi	brane fouling po c matter in bra	f inter r desa wo	e 11th mational dination rkshop	싱가폴		2018.07		
	Deep learning membrane foulir	application for ng using real-t images	g Worl Cong Ext	d Water gress & nibition 2018	일본		2018.09		
	(21) 법·제도 (설	계기준, 시방서,	지침) 등어	활용					
	구분	명칭 및 조항 ¹⁾	시행일시	7]	존 내 용		신	규 내 용	
	법								
	규정/지침								
	기준								
	시방서								
	(22) 정책수립에	활용	1		· · · · · · · · · · · · · · · · · · ·				
	정책명	정책추진 실적	정책 ² 일/	추진 시	담당누	브처·팀		기대효과	
6. 공공적 효과									
	(23) 교육 및 지!	도에 활용	1						
	구분	교육명	교육내용	교육대상	교육시긴	교육	인원	교육회수	
	교육훈련								
	기술상담								
	현장기술지도								
	(24) 사회적 성괴	-							

# 요 약 문

1. 연구제목

해수담수화플랜트 저전력/저비용 운영관리 지능형 플랫폼 기술개발(3차년도)

### 2. 연구기간

2018. 1. 1  $\sim$  2018. 12. 31

### 3. 연구목적

가. 과제목표 : 해수담수화플랜트 전력 사용량 연간 증가율 5% 이내 유지 및 유
 지관리 비용 5% 절감을 위한 운영관리 기술 개발

#### 나. 세부목표 :

- 해수담수화 운영프로그램 구축완료 및 수정·보완
- 국내 T/B 전처리 대안공정 운영인자 확보
- 담수화 공정 수압시스템 및 에너지 사용량 예측기술 개발
- 고압펌프 이상진단 및 해수담수플랜트 자산관리 로직 구축

### 4. 연구내용

- 가. 해수담수화플랜트 저전력·저비용 운영관리 기술 개발
- 나. 담수화 공정 수압시스템 최적화 기술 및 에너지맵핑 시스템
- 다. 고압펌프 이상진단 및 해수담수플랜트 자산관리 로직 개발

### 5. 연구결과

- 가. 해수담수화플랜트 저전력·저비용 운영관리 기술 개발
- DAF 최적 운전조건을 도출하기 위하여 응집제 주입률 0.5~3 ppm, 포화기 압력 4~6 bar, 순환율 10~20%에서의 처리효율을 비교함
- 국내 T/B DAF 운전 DB를 활용하여 운영프로그램 내 DAF 모델을 검·보정함
- 침지식 UF 최적 운전조건을 도출하기 위하여 총 회수율 97~99%, 1단 막여과유
   속 0.8~1.2 m³/m² · d, 2단 막여과유속 0.37~0.53 m³/m² · d에서의 처리효율 비교함
- 국내 T/B DAF 및 침지식 UF 공정의 에너지 소모를 분석하고, 스케일업 시의
   에너지 소모 변화를 예측함
- 국내 T/B 각 단위공정별 수질분석을 수행함

- UAE 플랜트 운영을 위한 해수담수 통합 운영프로그램 구축을 완료함
- 나. 담수화 공정 수압시스템 최적화 기술 및 에너지맵핑 시스템
- 해수담수화 플랜트 규모별 수압시스템 해석 소프트웨어를 개발함
- UAE 플랜트 적용을 위한 에너지 측정 · 분석 기술을 개발함
- 다. 고압펌프 이상진단 및 해수담수플랜트 자산관리 로직 구축
- 국내 T/B 운전 데이터를 활용하여 정유량 방식 역삼투 공정 모델 파라미터를 최적화 함
- 칼만필터-머신러닝 기반의 고압펌프 이상진단 알고리즘을 개발함
- UAE 플랜트 적용을 위한 해수담수플랜트 자산관리 로직을 구축함

# SUMMARY

1. Project Title/Subtitle

Development of the O&M platform technology for low-energy and low-cost seawater desalination plant(3rd year)

2. Research Period

2018. 1. 1  $\sim$  2018. 12. 31

- 3. Research Objectives
- A) Final goal: Development of technology to maintain the energy consumption increase within 5%/yr and to reduce O&M cost by 5% for seawater desalination plant
- B) Specific goals:
  - Completion of developing the operation program of desalination plant
  - Securement of operation factors for pretreatment processes at Daesan T/B
  - Development of technology to optimize the seawater hydraulic system and to predict energy consumption of seawater desalination plant
  - Algorithm development to diagnose the abnormality of high pressure pump and to manage the asset of seawater desalination plant

4. Research Contents

- Development of low energy and low cost O&M technology for the seawater desalination plant
- (2) Optimization of hydraulic system of desalination plant and development of energy mapping system
- (3) Algorithm development of diagnosing the abnormality of high-pressure pump and managing the assets of desalination plant

5. Research Results

- Development of low energy and low cost O&M technology for the seawater desalination plant
  - DAF performance was compared at different coagulant dosing rate(0.5~3

ppm), saturator pressure (4~6 bar), and recycling ratio(10~20%) to derive the optimal operation condition in DAF process

- DAF model was verified using operation data obtained from Daesan T/B
- Submerged-UF performance was compared at different recovery rate (97~99%),  $1^{\rm st}$  membrane module flux (0.8~1.2  $\rm m^3/m^2 \cdot d$ ), 2nd membrane module flux (0.37~0.53  $\rm m^3/m^2 \cdot d$ ) to derive the optimal operation condition in submerged-UF process
- Based on the Daesan operation data, energy consumption of DAF and submerged-UF processes was analyzed considering scale-up
- Water quality analysis of unit processes in Daesan T/B was conducted
- Development of operation program for UAE pilot plant was completed
- (2) Optimization of hydraulic system of desalination plant and development of energy mapping system
  - Software to analyze the hydraulic system in seawater desalination plant of different sizes was developed
  - Monitoring and analyzing the energy consumption of seawater desalination plant was developed
- (3) Algorithm development of diagnosing the abnormality of high-pressure pump and managing the assets of desalination plant
  - Based on the Daesan operation data, parameters of RO process model were verified
  - Kalman filter and machine learning based algorithm to diagnose the abnormality of high-pressure pump was developed
  - Algorithm to manage the assets of desalination plant was developed

# $\mathsf{C} \mathrel{\mathsf{O}} \mathsf{N} \mathrel{\mathsf{T}} \mathrel{\mathsf{E}} \mathrel{\mathsf{N}} \mathrel{\mathsf{T}} \mathrel{\mathsf{S}}$

제 1 장	Introduction 1
1.1 Th	e purpose of the research and development
1.1.1	Background of research1
1.1.2	Objectives of research 2
1.2 Ne	cessity of the research and development
1.2.1	Technical aspects 4
1.2.2	Industrial and economic aspects
1.3 Th	e scope of research and development
1.4 Wo	olrd Market and Technology Development Trend
1.4.1	International seawater desalination market trend
1.4.2	Status of International Desalination Technology Development 9
1.5 Do	mestic market and technology development trend 12
1.5.1	Domestic desalination market trend 12
1.5.2	Status of Domestic Desalination Technology Development 13
제 2 장	Main subject 16
2.1 D	evelopment of low-power and low-cost operation management
te	echnology for seawater desalination plant
2.1.1	Derivation of optimal DAF operating conditions16
2.1.2	Validation of model using DAF operation DB
2.1.3	Determination of optimal UF operating conditions
2.1.4	Analysis of energy consumption pre-treatment processes
2.1.3	Analysis of water quality for domestic 1/B
2.1.0	Development of program to diagnosis the high processor pump
2.1.7	demage and esset management in desclination plant automation and
22 U	variable and asset management in desamination plant
2.2 II d	esalination process
221	Hydraulic system analysis software development by segurater
2.2.1	desalination plant scale
222	Development of energy mapping logic for UAE pilot plant
2.2.2	20. creptimente et enter8, mapping togle for origi phot plant 00

2.3 Diagnosis of high-pressure pump damage and establishment of asset
management logic of SWRO desalination plant
2.3.1 Optimization of constant flow type RO process model parameters
using domestic T/B operation DB
2.3.2 Development of high pressure pump fault diagnosis algorithm based
on Kalman Filter - Machine Learning
2.3.1 Development of asset management logic for desalination plant 86
제 3 장 Conclusion
3.1 Development of low-power and low-cost operation management
technology for seawater desalination plant
3.2 Hydraulic system optimization technology and energy mapping system in
desalination process
3.3 Diagnosis of high-pressure pump damage and establishment of asset
management logic of SWRO desalination plant
References 95

# 목 차

제 출 문 …	i
요 약 문 .	vi
목 차 "	xii
표목차 "	xiv
그림목차 "	XV

제 1 장 서 론	1
1.1 연구개발의 목적	1
1.1.1 연구 배경	1
1.1.2 연구 목적	2
1.2 연구개발의 필요성	4
1.2.1 기술적 측면	4
1.2.2 산업, 경제적 측면	5
1.3 연구개발의 범위	6
1.4 해외 시장 및 기술개발 동향	6
1.4.1 세계 해수담수화 시장 동향	6
1.4.2 해외 해수담수화 기술개발 현황	9
1.5 국내 시장 및 기술개발 동향	12
1.5.1 국내 해수담수화 시장 동향	12
1.5.2 국내 해수담수화 기술개발 현황	13
제 2 장 본 론	16
2.1 해수담수화플랜트 저전력·저비용 운영관리 기술 개발	16
2.1.1 원수 수질대응 DAF 최적 운영조건 도출	16
2.1.2 국내 T/B DAF 운전 DB 활용하여 DAF 공정 모델 검·보정	19
2.1.3 전전처리수 수질변화 대응 침지식UF 최적 운영조건 도출	21
2.1.4 국내 T/B 운전 DB 활용하여 전처리 대응공정 에너지 소모 분석 … 2	25
2.1.5 국내 T/B 단위공정별 수질 분석	37
2.1.6 UAE 플랜트 운영을 위한 해수담수플랜트 통합 운영프로그램 구축 … 4	45
2.1.7 해수담수화 공정 운영 프로그램 내 펌프 이상 진단 및 자산관리 모듈 추가 구축 …	49
2.2 담수화 공정 수압시스템 최적화 기술 및 에너지맵핑 시스템	51

2.2.1 해수담수화 플랜트 규모별 수압시스템 해석 소프트웨어 개발 51
2.2.2 UAE 현지 플랜트 적용을 위한 에너지 맵핑 로직 개발 58
2.3 고압펌프 이상진단 및 해수담수플랜트 자산관리 로직 구축 69
2.3.1 국내 T/B 운전 DB 활용 정유량 방식 RO공정 모델 파라미터 최적화 69
2.3.2 칼만필터-머신러닝 기반의 고압 펌프 이상 진단 알고리즘 개발 81
2.3.3 해수담수플랜트 자산관리 로직 구축
제 3 장 결론
3.1 해수담수화 공정 운영 지능화 패키지 기술 개발
3.2 국내 T/B 모형플랜트 대안공정 구축 및 운영
3.3 담수화 공정 배관해석 기술개발
참고문현

목	차
	목

표 1 당해 연도 연구 내용 및 범위
표 2 운전기간동안 DAF 유입수질 및 운전조건
표 3 민감도 주요 변수
표 4 DAF 공정 주요 변수(기존 정수장 모델 및 해수 모델)
표 5 운전기간동안 침지식 UF 유입수질 및 운전조건
표 6 l, 2단 UF침지막 처리수량, 여과유속 및 역세유량
표 7 DAF 주요설비 사양 및 전력비교
표 8 침지식 UF 공정 주요설비 사양 및 전력 비교
표 9 침지식 UF 1단 및 2단의 SEC 분석 결과 요약
표 10 DAF 최적 설계·운영 조건
표 11 Specifications & Dimensions 34
표 12 컴프레셔, 펌프 용량 및 정격전력 정보
표 13 UF 최적 설계·운영 조건
표 14 샘플링 및 수질분석 항목
표 15 해수담수 모형플랜트 단위공정별 수질분석 결과
표 16 단위공정별 TDS 및 SDI 제거율
표 17 잔류철 농도(Fe ³⁺ )와 UV ₂₅₄ 홉광도에 대한 상관성 분석
표 18 SWRO UNIT 배관 해석 결과
표 19 BWRO UNIT 배관 해석 결과
표 20 1,000톤/일 규모플랜트 압력별 배관 손실
표 21 1,000톤/일 규모플랜트 유량별 배관 손실 54
표 22 대산 파일럿 플랜트 배관 해석 결과 55
표 23 기존 프로그램과 개발하려는 프로그램의 차별성 56
표 24 수온, TDS변화에 따른 MTBF 공정 에너지 사용량 기준 값 59
표 25 수온, 유입탁도 변화에 따른 DAF 공정 에너지 사용량 기준 값 60
표 26 수온 변화에 따른 UF 공정 에너지 사용량 기준값
표 27 수온 변화에 따른 CF 공정 에너지 사용량 기준값 64
표 28 수온, TDS 변화에 따른 SWRO 공정 에너지사용량 기준값 계산결과
표 29 전력량계 필요수량 및 설치 위치
표 30 단위공정별 에너지 사용량 용도
표 31 Hydranautics Recommended Chemical Cleaning Solutions
표 32 Hydranautics Recipes for Cleaning Solutions
표 33 Cleaning Solution Volume Requirement per RO Element
표 34 전산 모사 시나리오의 유입수 온도 및 농도 조건

표 35 전산 모사 시나리오 Parameter 74
표 36 분리막 세정 조건
표 37 분리막 교체 시점에 따른 역삼투 공정의 세정 횟수, 교체 횟수, 운영비 비교 77
표 38 Water permeability (A), 1 [ppm] 조건 77
표 39 Salt permeability (B), 2,000 [ppm] 조건
표 40 Water permeability (A), 32,000 [ppm] 조건
표 41 Salt permeability (B), 32,000 [ppm] 조건
표 42 진동의 정보에 따른 주파수 범위
표 43 ISO 10816 기준 ······ 84
표 44 수력학적 원인으로 인한 펌프의 진동
표 45 자산관리 로직의 자산별 분류
표 46 해수 취수펌프와 취수펌프에 포함되는 O-Ring에 대한 자산 코드(a) 89
표 47 해수 취수펌프와 취수펌프에 포함되는 O-Ring에 대한 자산 코드(b) 91
표 48 Level 7까지 분류되는 부품에 대한 저장 정보 및 펌프에 대한 예시 92

# 그 림 목 차

그림	1 '	인구 당 재사용 가능한 수자원 총량 (2013)	1
그림	2	지역별 해수담수화 시장 현황 (GWI, Desalination Market 2016) 2	
그림	3 -	중동 지역의 주요 담수화 기술 분포도	3
그림	4	발주방식에 따른 해수담수화플랜트 시장 규모	3
그림	5 2	2015년 한국기업의 해수담수화 플랜트 수주실적 (GWI 2015) 5	
그림	6 I	BOT/BOO 수주 현황 - 국내기업 전무 (GWI 2015) 5	
그림	7 2	2014년을 기준으로 해수담수화 시장 전망	7
그림	8	해수담수화 시장 상위 10개국 시장 예측 (GWI 2015) 7	,
그림	9 9	역삼투 공정 물 생산 비용 (GWI DesalData, 2011)	
그림	10	주요 해수담수화공정의 운영비용 분석 (MSF, MED, SWRO) 9	
그림	11	후쿠오카 해수담수화 플랜트 공정도	10
그림	12	Ashkelon 해수담수화 플랜트 공정도	0
그림	13	Palmachim 해수담수화 플랜트 공정도	12
그림	14	국내 해수담수화 플랜트 현황	13
그림	15	영홍 해수담수화 플랜트 공정도	14
그림	16	광양 해수담수화 공정도	14
그림	17	기장 해수담수화 플랜트 공정도	15
그림	18	파일럿플랜트 공정 모식도	16
그림	19	파일럿플랜트 형장 사진	16
그림	20	응집제 주입률에 따른 DAF 처리 효율 비교	17
그림	21	포화기 압력에 따른 플랜트 수질변화	18
그림	22	DAF 순환율 변화에 따른 플랜트 수질변화	19
그림	23	DAF 데이터 및 부상상수 계산식	19
그림	24	matlab을 이용한 민감도 분석	20
그림	25	DAF 최적 운영조건 로직과 해수담수 운영프로그램 2	21
그림	26	침지식 UF 공정 모식도 2	21
그림	27	UF 막여과유속 변화에 따른 탁도 제거율 2	22
그림	28	UF 회수율 변화에 따른 탁도 제거율	23
그림	29	UF 막여과유속에 따른 차압 변화 2	23
그림	30	2단 브로워 가동시간 변화에 따른 처리수질 비교(탁도, SDI15) 24	
그림	31	DAF 공정 운영을 위한 HMI 화면 2.	5
그림	32	응집제 농도에 따른 DAF 에너지 소모 변화	26
그림	33	포화기 압력에 따른 SEC 변화 2	27
그림	34	DAF 표면부하율 변화에 따른 SEC 변화	7

그림 35 1단 가동시 HMI 화면	28
그림 36 1단 역세시 HMI 화면	• 28
그림 37 2단 가동시 HMI 화면	29
그림 38 2단 역세시 HMI 화면	29
그림 39 침지식 UF 운전모드별 SEC 비교	30
그림 40 플럭스 변화에 따른 UF 에너지 소모 변화	31
그림 41 회수율 변화에 따른 UF 에너지 소모 변화	32
그림 42 브로워 조건변화에 따른 UF 에너지 소모 변화	32
그림 43 DAF 공정 설계유량별 SEC 변화	35
그림 44 침지식 UF 공정 설계유량별 SEC 변화	37
그림 45 국내 T/B 해수담수 모형플랜트 공정도	37
그림 46 해수담수 모형플랜트 물질수지도	• 42
그림 47 해수원수, DAF 처리수, 침지식 UF 처리수 UV ₂₅₄ 홉광도 비교	43
그림 48 Fe ³⁺ 가 UV ₂₅₄ 훕광도에 미치는 영향	43
그림 49 잔류철 농도와 UV ₂₅₄ 비교	44
그림 50 조위차가 UV ₂₅₄ 홉광도에 미치는 영향	45
그림 51 UAE 플랜트 해수담수 통합 운영프로그램 HMI 화면 구성	45
그림 52 DAF-Optimization	46
그림 53 UF-Optimization ·····	46
그림 54 RO-Optimization ·····	47
그림 55 Energy usage measurement	48
그림 56 Energy usage accumulate	48
그림 57 Energy consumption analysis	49
그림 58 고압펌프 이상진단 기능 HMI 화면 구성	50
그림 59 해수담수플랜트 자산관리 기능 화면 구성	• 50
그림 60 기존 프로그램(pipenet)을 통한 1,000톤/일 규모 플랜트 배관 해석 …	51
그림 61 대산 파일럿 플랜트 배관도면	• 55
그림 62 해수담수화 플랜트 소프트웨어 제작 화면 적용 예시	• 57
그림 63 해수담수화 플랜트 소프트웨어 3D CAD 라이브러리	58
그림 64 에너지 사용량 순시값 측정 화면	• 67
그림 65 에너지 사용량 누적값 측정 화면	• 67
그림 66 정유량 방식 역삼투 공정의 시스템 구성도	• 69
그림 67 역삼투 공정 분리막 세정 및 교체 시점 결정 알고리즘(a)	70
그림 68 역삼투 공정 분리막 세정 및 교제 시점 결정 알고리즘(b)	72
그림 69 (A) 압력강하, (B) 에너지 소모량, (C) 생산수 수량, (D) 염투과도 ·· 75	5
그림 70 RO 공정내에서 각 펌프별 에너지 소모량	• 76
그림 71 분리막 교체 시점에 따른 역삼투 공정의 운영비 비교	• 76
그림 72 대산 testbed 데이터 (A) 유입수 온도 (Tf); (B) 유입수 수량 (Qf); (	C) 회

		수율(F	Rec); (D)	유입수	수질 (Cf	·) ······	•••••	•••••	•••••	•••••		•••••	80	
그림	73	대산	testbed	데이터를	를 이용한	모델	검증	결과	(A)	운전	압력	(Pf);	(B)	생
		산수	수질 (Cp	); (C) 신	산수 유	량 (Qp)	; (D)	차압 (	DP)		•••••		80	
그림	74	펌프의	진동계	설치 위	러치(a) •				•••••	••••••		•••••	8	31
그림	75	펌프의	이상 경	진단 순/	도									83
그림	76	펌프의	진동계	설치 위	비치(b) ··				••••••	••••••			8	36

# 제1장서 론

### 1.1 연구개발의 목적

### 1.1.1 연구 배경

- 가. UN 'The United Nations World Water Development Report 2015'에 따르면, 인류가 현재 물 소비 추세를 계속 이어가면, 2030년에는 인류가 필요한 물의 60% 밖에 확보하지 못할 것으로 예상됨
- 나. 지구온난화로 인해 강수 패턴 예상이 나날이 어려워짐에 따라 가용할 수 있는
   물의 총량이 감소하고 있으며, 인구 증가로 인해 음용수 수요도 함께 증가하고
   있는 추세



Note: The figures indicate total renewable water resources per capita in m³.

그림 1. 인구 당 재사용 가능한 수자원 총량 (2013) (출처: World Water Assessment Programme, WWAP)

다. 전 지구적 물 문제를 해결을 위해 1960년대부터 대체 수자원 확보 방안의 하나 로 해수담수화 기술이 주목받기 시작

- 라. 2014년을 기준 담수화 공정 생산량은 총 85.2 백만톤/일이며, 해수담수화 공정 이 59% 적용되어 있으며, 그 중 역삼투 공정이 절대적인 비중을 차지
- 마. 최근 역삼투막 기반 해수담수화 기술은 전력 소모를 절감하는 방향으로 개발
   되고 있으며, 高플럭스 막, 高효율 펌프, 高성능 에너지 회수장치 개발 등의 요
   소기술 개발과 역삼투 공정 성능을 향상시키기 위한 신개념 전처리 공정 및
   막오염 제어 기술 개발 등 많은 연구개발이 이루어지고 있음

### 1.1.2 연구 목적

- 가. 해수담수화 시장 변화 추세에 발맞추기 위해 역삼투 해수담수화 기술 개발에 집중해야하며, 경쟁력 확보를 위해 현재 중위권 수준인 에너지 소모(Specific energy consumption, SEC)를 선진 수준으로 향상시킬 필요가 있음
- 나. 중동 및 북아프리카 지역이 전체 해수담수화 시장의 약 50%를 차지하고 있으 며, 특히 중동지역은 전 세계에서 가장 많은 담수화 플랜트가 위치한 곳으로 초기에는 중발식 해수담수화 플랜트가 주를 이루었으나, 현재 약 79% 플랜트 가 역삼투 방식을 적용하고 있음



그림 2. 지역별 해수담수화 시장 현황 (출처: GWI, Desalination Market 2016)

Source: WWAP, with data from the FAO AQUASTAT database. (http://www.fao.org/nr/water/aquastat/main/index.stm) (aggregate data for all countries except Andorra and Serbia, external data), and using UN-Water category thresholds.



그림 3. 중동 지역의 주요 담수화 기술 분포도

- 다. 국내 해수는 TDS 32,000 mg/L 내외로 비교적 염도가 낮은 편이나 세계 시장 진출을 위해서는 최대 시장인 중동 지역을 대상으로 현지 수질 기준의 에너지 저감 기술 확보가 필요함. 국내 기술 의 브랜드화를 통해 잠재적 기술 가치를 증대하고, 핵심 시장 중심으로 현지화 기술 개발 전략을 추진해야함
- 라. 2016년 이후 EPC 사업 발주가 지속적으로 상승할 것으로 예상되나, BOO/BOT 사업 규모도 큰 비중을 차지할 것으로 예측됨. 이에 대응하기 위하여 현지 상 황에 적합한 O&M 기술 확보가 매우 중요함



### 1.2 연구개발의 필요성

### 1.2.1 기술적 측면

가. 기술적 측면에서 현 상태 및 본 연구를 통해 달성하고자하는 목표는 다음과 같음

As is	To be
• 해수담수화 플랜트 운영을 최적화	• 해수담수화 플랜트 저전력·저비
하는 프로그램의 부재	용 운영을 위한 최적화 프로그램
• 국내 역삼투 공정 기술력에 대한	개발 및 적용
낮은 인지도로 해외 시장 진입 어	• 저에너지 해수담수화 플랜트 운
려움	영을 위한 가이드라인 확립
• 배관설계는 유량분배 불균형 해결	⇒ • 수압시스템 최적화를 통해 에너
을 목적으로 수행되고 있음	지 사용량 0.05 kWh/m ³ 이상 절
• 에너지 사용량 변화를 예측하거나	감
효율을 진단하기 보다는 에너지	• 에너지 맵핑 기술을 통해 에너지
사용량만을 만둔 모니터링 하는	사용량 모니터링, 변화예측 수행
수준	및 주요 장치 이상 유무 평가

11	î	7			
----	---	---	--	--	--

달성 방법	뵨 연구팀의 준비 상태
<ul> <li>해수담수화 운영 최적화 프로그램 개발</li> </ul>	<ul> <li>기존 해수담수화 성능 모사 프로그램 비교 분석</li> </ul>
<ul> <li>저에너지 해수담수화 플랜트 운영 관리 매뉴얼 구축</li> </ul>	<ul> <li>해수담수화 플랜트 효율적 운영을 위</li> <li>한 주요 인자 사전조사</li> </ul>
• 역삼투 공정 고압펌프의 저전력 VFD 지능형 최적 제어 기술 개발	<ul> <li>기존의 역삼투 해수담수화 플랜트의 운영·관리 기술에 대한 정보 및 역 삼투 공정 제어 기술 보유</li> </ul>
<ul> <li>담수화 플랜트 수압시스템 최적화</li> <li>및 에너지 맵핑 시스템 개발</li> </ul>	<ul> <li>역삼투 방식 해수담수화 플랜트 구성 요소별 에너지 필요량 분석</li> <li>기존 상용 배관압력 해석 프로그램 분석</li> <li>엑셀 형식의 에너지 계산도구 개발</li> </ul>

### 1.2.2 산업, 경제적 측면

 가. 국내 해수담수화 시장 경쟁력은 전체 수주 물량 기준 '12년 세계 3위(두산중 공업) 수준이었으나, '15년 최고 순위가 11위(삼성 ENG)로 하락세를 보임



그림 5. 2015년 한국기업의 해수담수화 플랜트 수주실적 (GWI 2015)

나. 이는 해수담수화 시장 재편(증발식→역삼투식)에 대한 늦은 대처와 O&M 기술 부족에 따른 BOT/BOO 시장 진출 실패 등이 원인으로, 세계 수준의 기술개발 을 통해 시장경쟁력 확보가 중요함



그림 6. BOT/BOO 수주 현황 - 국내기업 전무 (GWI 2015)

### 1.3 연구개발의 범위

가. 당해 연도 연구내용 및 범위는 표 1과 같음

표 1. 당해 연도 연구 내용 및 범위

목표	내용 및 범위
	• 원수 수질대응 DAF 최적 운영조건 도출
	• T/B DAF 운전 DB 활용, DAF 공정 모델 검·보정
국내 T/B 전처리 대안공정	• 전처리수 수질변화 대응 침지식UF 최적 운영 조
운영 인자 확보	건 도출
	• 국내 T/B 운전 DB 활용 전처리 대응공정 에너지 소
	모 분석
해수담수화 운영프로그램	• 해수담수화 운영프로그램 제작 완료
수정・보완 및 모듈 추가	• 해수담수 공정 운영 프로그램 내 펌프 이상 진단
제작	및 자산관리 모듈 추가 구축
담수화 공정 수압시스템 및	• 채수다수하 프래트 규미벼 수아시스테 체서 S/W/ 개바
에너지 사용량 예측기술	• UNE 처기 프레트 저용으 이하 에너기 매피 근지 개바
개발	• UAL 원시 일렌드 적중을 위한 헤어지 접정 모두 개월
	• 국내 T/B운전 DB를 활용하여 정유량 방식 RO공정
고압펌프 이상진단 및	모델 파리미터 최적화
해수담수 플랜트 자산관리	• 칼만필터-머신러닝 기반 고압펌프 이상 진단 알고리
로직 구축	즘 개발
	• 해수담수플랜트 자산관리 로직 구축

### 1.4 해외 시장 및 기술개발 동향

### 1.4.1 세계 해수담수화 시장 동향

가. 해수담수화 시장은 2014년 경제 위기로 인해 급격히 축소되었으나, 2015년 이
 후 다시 확대되고 있는 추세이며, 역삼투 방식이 절대적인 비중을 차지함



(출처:Ghristopher Gasson, Desalination Market Update, 2014, DesalData.com)

나. 해수담수화 시장 상위 10개 국가에서 중동 지역이 대부분을 차지하고 있으며,
 특히 이 지역을 중심으로 향후 대형 플랜트 발주가 다수 예정되어 있음



그림 8. 해수담수화 시장 상위 10개국의 2018년도까지 시장 예측 (GWI 2015)

- 다. 아메리카에 대륙은 미국, 칠레 등을 중심으로 대용량 담수화 플랜트가 건설되 었으며, 1960년대에는 MSF 방식, 1980대 이후 역삼투 방식 담수화 기술이 주 로 적용됨. 현재 전체 담수화 플랜트 중 역삼투 방식이 약 77.5%를 차지
- 라. 아시아에는 2015년 기준 약 4,100개 담수화 플랜트가 건설, 운영되고 있으며, 전체 담수화플랜트의 87%가 역삼투 방식을 적용함
- 마. 오세아니아 지역에는 약 380개 담수화 플랜트가 있으며 대부분 호주에 건설 되어있음. 역삼투 공정을 비롯하여 전기투석, MED, MSF 등 다양한 방식의 담 수화 기술이 적용되었음

- 바. 분리막 성능 향상을 위한 연구가 활발하게 진행되고 있으며, 막증발 및 정삼투
  등 새로운 담수화 기술에 대한 연구와 기존 RO 공정의 성능향상을 위한 연구
  가 새로이 부각되고 있음
- 사. 역삼투 방식 해수담수화 물 생산단가는 초기 1,500 원/m³ 에서 분리막 단가 감
   소, 에너지 회수장치 활용으로 7~800 원/m³ 대로 감소하였으나, 에너지 비용
   및 재료비 상승, 고정 비용 증가 등으로 더 이상의 생산단가 저감이 어려움



그림 9. 역삼투 공정의 물 생산 비용 (GWI DesalData, Global water market 2011)

아. 역삼투 공정의 운영비용은 에너지 소요량과 직접적인 관계가 있기 때문에, 해
 수담수화 물 생산단가 절감을 위해서는 운영유지비용의 30~50%를 차지하는 전
 력비용을 절감하는 것이 가장 큰 이슈가 될 것임



그림 10. 주요 해수담수화공정의 운영비용 분석 (MSF, MED, SWRO)

### 1.4.2 해외 해수담수화 기술개발 현황

- 가. 후쿠오카 해수담수화 플랜트 (50,000 m³/일)
- (1) 공정구성: Subsurface intake → 취수정 → UF → 고압 RO → 저압 RO → 생 산수조 → 도수로 → 혼합정 (수돗물과 혼합) → 공급
- (2) SWRO는 10인치 중공사막 (회수율 60%, TCA TYOBO, 5 트레인, 1개 트레인 용량 8,000 ㎡/일, 트레인 당 200 베셀, 베셀 당 2 엘리먼트) 사용으로 높은 회수율 운전 가능. BWRO는 8인지 나권형 막모듈 적용 (NITTO DENKO, 5 트레인, 트레인 당 40 베셀, 베셀 당 5 엘리먼트)
- (3) Pelton turbine 타입 에너지 회수장치 사용으로 효율이 높지 않음. 에너지소모
   50,000 ㎡/일 생산기준 5.4 kWh/㎡, 물 공급가 230 엔/㎡로 높은 수준



나. 이스라엘 Ashkelon 해수담수화 플랜트 (390,000 m³/일)

- (1) 2005년 이스라엘에 설치된 플랜트로 IDE(Israel Desalination Enterprises)사와 Veolia사 지분의 BOT(Build, Operate, Transfer)로 진행된 사업. 하루 처리용량 390,000 m³/일, 에너지 사용량 3.5 kWh/m³ 로 세계 최고 수준 기술이 적용된 플랜트
- (2) 공정구성: Intake → Deal media filters → Micronic filters → HP pumps / Energy Recovery System → Reverse Osmosis Process → Lime stone filters → Product tank



그림 12. Ashkelon 해수담수화 플랜트 공정도

- (3) 펌프효율 증대를 통한 에너지 저감을 위하여 Pressure Center를 운영. 일반적 으로 고압펌프에 인버터를 적용하나 에너지 저감을 위하여 부스터펌프에 VFD 를 적용하며, 전력 피크 시간을 고려하여 On/Off로 시설 운영
- (4) 역삼투 공정은 2단으로 운영되고 있으며 보론 제거율 향상을 위하여 2단 RO
   유입 전에 pH를 조정. 고압 펌프로부터 역삼투 막모듈 유입 배관까지 고농도
   염에 의한 부식에 의하여 슈퍼 듀플렉스 재질을 적용
- (5) 플랜트 운영 수질 계측의 경우, 플랜트 현장과 수질 계측실에서 2단으로 모니 터링 하고 있으며, 대용량 해수담수화 플랜트 특성상 계단 및 플랜트 하부에 배수 시설 설치
- 다. Palmachim 해수담수화 플랜트
- (1) 2007년 이스라엘에 설치된 플랜트로 IDE(Israel Desalination Enterprises)사와 유다가베사 지분의 BOT(Build, Operate, Transfer)로 진행된 사업. 하루 처리 용량은 300,000 m³/일, 에너지 사용량 3.4 kWh/m³ 로 세계 최고 수준의 기술 이 적용된 플랜트
- (2) 공정구성: Coarse screen filtration  $\rightarrow$  Deep-bed multi-media filtration  $\rightarrow$ Cartridge filtration  $\rightarrow$  SWRO  $\rightarrow$  Ion-exchange softeners  $\rightarrow$  BWRO  $\rightarrow$ Product stabilization



그림 13. Palmachim 해수담수화 플랜트 공정도

(3) 역삼투 공정은 2단으로 운영되고 있으며 회수율 향상을 위하여 2단 RO 전단 에 연수화 장치를 적용하였으며 역삼투막의 경우 나노입자가 포함된 NanoH₂O 막을 적용함. 역삼투막 세척효율 증가를 위해 마이크로버블을 적용하여 CIP 주기가 증가됨

### 1.5 국내 시장 및 기술개발 동향

#### 1.5.1 국내 해수담수화 시장 동향

- 가. 광역상수도 및 지방상수도가 건설되기 힘든 도서지역을 중심으로 지속적으로 해수담수시설이 증설되고 있음
- 나. 정부에서 가뭄대비 수자원 확충을 위해 도서지역 등 소규모 해수담수화 시설 지속 개발을 추진하는 계획을 수립(2015.09, '수자원의 체계적 통합관리 방 안', 관계부처 합동)함에 따라, 국내 해수담수플랜트 중 약 70%가 도서지역에 위치해 있으며, 주로 1,000 ㎡/일 미만의 소규모 담수화 시설임
- 다. 대규모 시설로는 포스코 광양제철소(30,000 ㎡/일 규모, '14년~), 부산시 기장 군(45,000 ㎡/일 규모)에 구축되어 있음



그림 14. 국내 해수담수화 플랜트 현황

라. 소규모 해수담수화 시설은 유인 도서지역을 대상으로 지속적으로 증가될 계획 이며, 충남 대산산업단지 공업용수 공급을 위하여 K-water에서 100,000 ㎡/일 규모 해수담수화 사업을 추진하고 있음

#### 1.5.2 국내 해수담수화 기술개발 현황

가. 영흥화력 해수담수화플랜트 (2,000 m/일)

- (1) 공정구성: Intake (발전소 온배수) 2단 PCF UF SWRO (16인치, 8인치) BWRO (8인치) 공업용수 공급 (8인치 생산수는 음용수로 공급)
- (2) 역삼투 공정은 16인치 SWRO (Hydranautics)와 PX 타입 에너지 회수장치를 사용하는 1,800 ㎡/일 규모 트레인과 8인치 SWRO (Hydranautics)와 turbo charger 타입 에너지 회수장치를 사용하는 200 ㎡/일 규모 트레인 등 총 2개 트레인으로 구성됨

(3) 농축수는 태양열 증발기(solar heat desalination, 12 ㎡/일)로 농축시키며, 이때 발생되는 담수는 SWRO 생산수와 혼합하여 보론 농도 0.5 mg/L 이하로 공급



그림 15. 영흥 해수담수화 플랜트 공정도

나. 광양 해수담수화 플랜트 (30,000 m³/일)

 공정구성: Intake (발전소 온배수) - DAF - UF - SWRO (8인치) - BWRO (8인 치) - 공업용수 공급



그림 16. 광양 해수담수화 공정도

 (2) SWRO 공정은 8인치(DOW chemical) 모듈을 사용하여 6+1(예비)개 트레인으로 구성되었으며, BWRO 공정은 8인치(DOW chemical) 모듈을 사용하여 3+1(예 비)개 트레인으로 구성됨

(3) 에너지회수장치는 ERI사의 PX를 적용하였고, ISD (internal staged design) 기

법을 적용하여 전단에는 저유량·고염제거율 막을 설치하고 후단에는 고유 량·저염제거율 막을 적용하여 설치비 및 에너지 절감(회수율 50 ~ 55%)

(4) 처리수조를 배치하고 않고 UF와 RO를 운영하는 UF-RO direct coupling 방식 을 적용하여 처리수조 내 2차 오염 가능성 원천 차단 및 펌프/수조 생략을 통 한 공사비 및 운영비 절감

다. 부산 기장 해수담수화 플랜트 (45,000 m³/일)

(1) 공정구성: 2개의 트레인에서 각각 'DAF - UF - SWRO - BWRO - 후처리'
 과 'DAF - DMF - SWRO - 후처리'를 거쳐 담수를 생산



그림 17. 기장 해수담수화 플랜트 공정도

(2) SWRO 공정에 스플릿 파샬 방식을 적용하여 BWRO 공정 용량 저감 및 에너 지 효율 증대

(3) 8 MIGD 계열에는 DWEER 타입 에너지 회수장치를 적용하였으며, 2 MIGD 계 열에는 turbo charger 타입 에너지 회수장치를 적용

# 제 2 장 뵨 론

2.1 해수담수화플랜트 저전력·저비용 운영관리 기술 개발

### 2.1.1 원수 수질대응 DAF 최적 운영조건 도출

- 가. 국내 T/B DAF 및 침지식 UF 공정 구성
- (1) 대산 산업단지 내에 위치한 100m³/일(RO 생산수 기준) 규모 해수담수 모형 플랜트는 그림1과 같이 구성되어 있으며, 전전처리 공정인 DAF 공정과 전처 리공정인 침지식 UF 공정은 200m³/일(처리수 기준) 규모로 구성됨(그림1과 2)



그림 18. 파일럿플랜트 공정 모식도



그림 19. 파일럿플랜트 현장 사진

나. DAF 최적 운영조건 도출을 위한 실험계획

(1) DAF 공정의 최적 운영조건을 도출하기 위해, 다양한 운전 조건(표면부하율, 포화기 압력, 순환율, 응집제 주입량)에서 처리효율을 비교함. 운전 기간 동안 유입 수질 및 DAF 공정 운전 조건은 다음 표와 같음

표 2. 운전기간동안 DAF 유입수질 및 운전조건

<ul> <li>유입유량 : 8.3 ~ 20 m³</li> <li>순환율 : 10 ~ 20 %</li> <li>표면부하율 : 7 ~ 16.6 m</li> <li>포화기 압력 : 4 ~ 6 ba</li> </ul>	h • 원수 TDS : 29,641 ±2,309 mg/L • 원수 수온 : 12 ~ 27℃ • 원수 탁도 : 9.67 ± 6.01 NTU • DAF 처리수 탁도 : 3.33 ±3.01 NTU
<ul> <li>응집제 주입률 : 0.5 ~3</li> </ul>	• DAF 처리수 탁도 : 3.33 ±3.01 NTU ppm

다. 응집제 주입률 변화에 따른 처리효율 비교

- (1) 응집제 주입률 변화(0.5~3.0 ppm)에 따른 DAF 처리효율 비교 결과, 응집제 주입률이 증가할수록 탁도 제거율이 대체적으로 증가하였으나, SDI₁₅는
   2.4~3.2 범위로 후단 RO 공정에 유입되기에 모두 적합한 수준을 나타냄
- (2) RO 공정 막오염 저감을 위해 RO 유입수 수질이 SDI₁₅<4이하를 만족해야하고</li>
   3 이하가 추천되므로(막 제조사 기준), 응집제 주입률 2 ppm이 적절한 것으로 판단됨



그림 20. 응집제 주입률에 따른 DAF 처리효율 비교

라. 포화기 압력 변화에 따른 처리효율 비교

- (1) 포화기 압력 변화(4~6 bar)에 따른 탁도 제거율 비교 결과, 압력이 증가함에 따라 탁도 제거율이 다소 증가하였고 SDI₁₅는 2.33~2.5 수준으로 나타남
- (2) 포화기 압력 4 bar에서 탁도 제거율의 높은 표준편차를 고려하면, 안정적인
   탁도 제거율 확보를 위하여 포화기 압력은 5 bar가 적절하다고 판단됨



그림 21. 포화기 압력에 따른 플랜트 수질변화

마. 순환율 변화에 따른 처리효율 비교

(1) 순환율 변화(10~24 %)에 따른 탁도 제거율 비교 결과, 탁도 제거율 및 SDI₁₅
 는 DAF 순환율에 크게 영향을 받지 않는 것으로 나타남



그림 22. DAF 순환율 변화에 따른 플랜트 수질변화

#### 2.1.2 국내 T/B DAF 운전 DB 활용하여 DAF 공정 모델 검·보정

가. 대산 해수담수 파일럿플랜트 DAF 운영 데이터 정리 (1) 파일럿플랜트 DAF 운영 데이터



나. 민감도분석을 통해 부상상수에 영향을 미치는 주요변수 도출

(1) 민감도 분석에 고려한 변수 : 유입 탁도, pH, TDS, 온도, 표면부하율, 순환율, 응집제 주입률, 포화수 압력

- (2) 해수담수 전처리로서의 DAF 운영데이터를 이용하여 민감도를 분석한 결과, 송전정수장 데이터를 활용했을 때와 유사하게 pH 민감도가 낮음
- (3) 민감도 index 값을 고려하여 탁도, 순환율, 응집제 주입률, 표면부하율, 유입온도, 포화수 압력을 다중선형회귀분석의 주요 변수로 고려함

표 3. 민감도 주요 변수

항목	민감도 index	민감도 순위	항목	민감도 index	민감도 순위
유입 탁도	190.16	1	표면부하율	71.59	4
유입 pH 19.37		7	순환율	106.35	2
유입 TDS	0.48	8	응집제 주입률	80.63	3
유입 온도	71.51	5	포화수 압력	60.12	6



다. 다중선형회귀분석을 이용한 상관관계식 도출

(1) 해수담수 전처리로서 DAF 공정의 주요 변수와 부상상수와의 상관관계는 다음 의 식으로 나타남

 $k_{i2} = -41.7098 + 0.1698X_i + 0.8612T + 1.2525L - 0.1648R + 2.4879C_i + 3.8248S_p + 0.1698X_i + 0.8612T + 0.1648R + 0.1648R + 0.1698X_i + 0.169X_i + 0.164X_i + 0.164X_i + 0.16X_i + 0.16X_i$ 

(Xi: 유입탁도, T: 유입온도, L: 표면부하율, R: 순환율, Ci :응집제주입률, Sp: 포화수 압력)

#### 표 4. DAF 공정 주요 변수(기존 정수장 모델 및 해수 모델)

구분	a0	X _i 계수	T 계수	L 계수	R 계수	C _i 계수	S _p 계수
기존(정수장) 모델	-65.841	16.645	-0.221	없음	-0.357	1.860	12.131
해수 DAF 모델	-41.7098	0.1698	0.8612	1.2525	-0.1648	2.4879	3.8248

#### 라. 유입수질(해수) 변화에 따른 DAF 최적 운영조건 제안 로직 프로그램 반영



DAF 최적 운영조건 제안 로직

해수담수 운영프로그램 DAF 최적화 모듈

그림 25. DAF 최적 운영조건 로직과 해수담수 운영프로그램

#### 2.1.3 전전처리수 수질변화 대응 침지식UF 최적 운영조건 도출

가. 침지식 UF 공정구성 및 운전 조건

(1) 대산 해수담수 모형플랜트 내 설치된 침지식 UF 공정은 그림 9과 같이 2단으로 구성되어 있으며, 1단에서 약 90%가 생산되고 1단 농축수가 2단으로 유입되어 약 9%의 물량이 추가적으로 생산됨



(2) 침지식 UF 1단 및 2단 공정은 다음과 같은 조건에서 운전됨

표 5. 운전기간동안 침지식 UF 유입수질 및 운전조건

•	유입유량 : 1단 202 m³/d(full-drain)	•	원수 TDS : 29,641 ±2,309 mg/L
	2단 20.2 m ³ /d(continuous)	•	원수 수온 : 12 ~ 27℃
•	회수율 : 1단 90%, 2단 70~90%	•	DAF 처리수 탁도 : 3.33 ±3.01 NTU
	(총 회수율 최대 99%)	•	UF 처리수 탁도 : 0.06 ± 0.18 NTU
•	막여과유속 : 1단 0.8~1.2 m³/m²・d	•	1단 TMP : 0.18 ± 0.08 kgf/cm ²
	2단 0.37~0.53 m³/m²·d		2단 TMP : 0.08 ± 0.06 kgf/cm ²

나. 막여과유속 및 회수율 변화에 따른 처리효율 비교

(1) 막여과유속 변화(1단 0.8~1.2 m/일, 2단 0.37~0.53 m/일)에 따른 처리수질 비교 결과, 탁도제거율 및 SDI₁₅ 모두 일정 수준을 유지하는 것을 확인함. 하지만, 최적 막 여과유속 선정을 위해서는 장기간 운전 시의 처리수질 변화, 차압 및 CIP 주 기를 비교하는 것이 필요함



그림 27. UF 막여과유속 변화에 따른 탁도 제거율

(2) 회수율 변화(1단은 90%로 고정, 2단 회수율을 70~90%로 변화)에 따른 탁도 제 거율 비교 결과, 회수율 증가에 따라 처리수질 변화는 거의 없음. 따라서, 총 회수율 99%(1단 90%, 2단 90%) 조건에서 운전하는 것이 효율 향상 측면에서 적합함



그림 28. UF 회수율 변화에 따른 탁도 제거율

(3) 막여과유속이 증가함에 따라 1단 및 2단 모두 대체적으로 TMP가 증가하는 경 향을 보였으나 표준편차가 높음. 최적 막여과유속 선정을 위해서는 장기간 운 전 시의 처리수질 변화, 차압 및 CIP 주기를 함께 비교하는 것이 필요함



그림 29. UF 막여과유속에 따른 차압 변화

다. 2단 브로워 가동조건 변화에 따른 처리효율 비교

 (1) 2단 브로워는 여과 및 역세가 수행되는 동안 30초 가동, 30초 운휴(이하 30/30 으로 표기)를 지속하고 있어 에너지 소모가 높음. 에너지 소모 절감을 위해 2 단 브로워 가동시간을 감소하여 운전(30/60, 30/90)하였을 때 처리수질의 변화 를 비교함

- 탁도는 2단 처리수 모니터링 결과이며, SDI₁₅는 통합처리수 측정함. 본 실험 을 위한 1단 및 2단 운전조건은 다음과 같음

표 6. 1, 2단 UF침지막 처리수량, 여과유속 및 역세유량

7 11	처리수량	여과유속	역세유량
十七	(m ³ /hr)	(m³/m²・일)	(m ³ /hr)
1단 UF 침지막	7.75	1.00	7.75
2단 UF 침지막	0.77	0.45	1.15

(2) 2단 브로워 가동시간 감소에 따른 탁도 제거율 변화는 거의 없었으며 SDI₁₅ 도 모두 4 이하로 나타남에 따라, 에너지 소모 감소를 위해 2단 브로워 가동 시간을 감소시킨 30/90 조건에서 운전하는 것이 적합하다고 판단됨. 본 실험 의 SDI₁₅ 값이 기존 침지식 UF 평균 처리수질 대비 높은 이유는 실험기간 동 안 원수 처리수질 악화로 UF 유입수질(DAF 처리수질)이 악화되었기 때문임



그림 30. 2단 브로워 가동시간 변화에 따른 처리수질 비교(탁도, SDI15)

### 2.1.4 국내 T/B 운전 DB 활용하여 전처리 대응공정 에너지 소모 분석

가. 국내 T/B 기준 DAF 공정의 에너지 소모 분석

(1) 해수담수화 플랜트 전처리 대안 공정의 에너지 소모를 분석하기 위해, DAF 및 침지식 UF 공정에 설치된 전력량계에서 기록된 일일 적산전력량과 일일 플랜트 처리유량을 이용하여 에너지 소모율(Specific electric consumption, SEC)을 계산함

(2) DAF 설비 가동 시, 원수공급펌프, 약품주입펌프, 응집기, 콤프레샤, 스크래퍼, 순환수 가압펌프, 슬러지 이송펌프, 스트레이너 펌프가 동작하며, 이 중 슬러 지 이송펌프는 간헐적으로 작동(슬러지 탱크 수위 high에만 가동)되고 스트레 이너 펌프는 UF 전력량계에 연결되어 있어 전력량 산정에서 제외됨



그림 31. DAF 공정 운영을 위한 HMI 화면

#### 표 7. DAF 주요설비 사양 및 전력비교

	구분	설비명	동력 (kW)	평균 실측전력 (kWh)	가동률	비고	
	대기 전력	DAF 관련 장비 미가동	0	평균 실측전력 (kWh)         가동률           0.108         33.3%           0.1585         (60 rpm)           4         0.169         약 25%           (30.9ml/min)         9           0.479         48%(10m³/hr)           1.154         70%(15m³/hr)           0.1455         30%           0.8885         (ch = 0.38, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36		-	
		응집기	1.5	0.1585	33.3% (60 rpm)	FHF37 DRN90L4	
		약품주입펌프	0.014	0.169	약 25% (30.9ml/min)	AX1-51-FTC -HWS-K	
		~ ~ ~ ~ ~ ~ ~		0.479	48%(10m ³ /hr)	CRN 15-2 (20.1 m ³ /h * 31.2m)	
		원수공급펌프	3	1.154	70%(15m³/hr)		
	DAF	스크래퍼	1.5	0.1455	30%	KMH-HV1F	
	DIII	순환수	<b>•</b> • •	0.8885	83% (순환유량 2m³/hr)	CRN 5-8 (6.02	
		가압펌프	2.2	0.74	75% (순환유량 2m³/hr)	m3/h * 64.1m)	
		공기압축기	2.2	2.5145	on(6bar) off(8.4bar) lcycle	SP3-120-3	
		슬러지 이송펌프	2.2	2.3395	-	상우ENG (1.98 m3/h * 15m)	

(3) 유입유량 8.3 m³/h, 포화기 압력 5 bar 조건에서 응집제 주입률에 따른 SEC 는 0.218±0.016 kWh/m³로 주입률 변화에 따른 SEC 변화는 미미하므로 처리 수질을 고려하여 최적 조건을 선정하는 것이 타당함



그림 32. 응집제 농도에 따른 DAF 에너지 소모 변화

(4) 포화수 압력에 따른 SEC 변화는 포화수의 압력조건 6 bar에서 다소 증가하였으며, 처리수질과 에너지 소모를 함께 고려하면 5 bar에서 운전하는 것이 적 합하다고 판단됨



그림 33. 포화기 압력에 따른 SEC 변화

(5) 실험 조건 내에서는 DAF의 표면부하율이 증가(원수 유입량 증가와 동일한 효과)함에 따라 SEC 변화가 거의 없는 것으로 확인되어, 처리수질에 영향이 없는 한도에서 높은 표면부하율로 운전하는 것이 유리함



그림 34. DAF 표면부하율 변화에 따른 SEC 변화

나. 국내 T/B 기준 침지식 UF 공정의 에너지 소모 분석

(1) 침지식 UF 설비 가동 시 전력량 산정에 영향을 미치는 설비는 스트레이너 펌
 프, 여과수 이송펌프(1, 2단), 유입수 공급펌프(2단), 드레인 펌프(1, 2단), 브로
 워(1, 2단) 등이 있으며 여과 및 운영 단계에 따라 다음 그림과 같이 작동함

① 1단 가동: 스트레이너 펌프 + 1단 여과수 이송펌프



그림 35. 1단 가동시 HMI 화면

② 1단 역세: 스트레이너 펌프 + 1단 브로워(15s) -> 1단 생산수 펌프(역세 15s) ->
 1단 드레인 펌프(90s) -> 1단 생산수 펌프(충수 90s) -> 밸브정렬(30s)



그림 36. 1단 역세시 HMI 화면

③ 2단 가동 : 스트레이너 펌프 + 2단 유입수 공급펌프 + 2단 여과수 이송펌프 + 2
 단 드레인 펌프 + 2단 브로워(1분당 30초 가동/30초 off)

표 8. 침지식 UF 공정 주요설비 사양 및 전력 비교

설비 구분	정격 전력 (kW)	실측 전력 (kW)	역률	모델명
스트레이너 펌프(DAF처리수이송펌프)	0.75	1.045	0.80	CRN 10-1 (8.34 m ³ /h * 13m)
1단 브로워	2.55	3.347	0.76	HRB-402
1단 여과수 이송펌프	0.75	0.355	0.27	CRN 10-1 (8.34 m ³ /h * 13m)
1단 드레인 펌프	2.2	2.538	0.67	CRN 20-1 (24.3 m ³ /h * 15.5m)
2단 유입수 공급펌프	0.37	0.237	0.37	CRN 1-3 (0.91 m ³ /h * 20.6m)
2단 브로워	2.55	3.752	0.85	HRB-402
2단 여과수 이송펌프	0.55	0.183	0.19	CRN 3-3 (3.58 m³/h * 21m)
2단 드레인 펌프	0.37	0.396	0.62	CRN 1-2 (2.66 m ³ /h * 12.3m)
2단 드레인+여과수	0.92	0.580	0.36	
2단 유입+드레인+여과수	1.29	0.837	0.37	

(2) 대산 파일럿플랜트에 적용된 침지식 UF 공정은 회수율을 높이기 위해 2단 방식을 적용하고 있음. 1단 단독 운영되는 경우 SEC 0.39 kWh/m³ 대비 1·2단이 동시에 가동되는 경우 SEC가 0.51 kWh/m³으로 크게 증가하였는데, 이는 2단 SEC가 7.37 kWh/m³로 매우 높기 때문. 2단 UF 공정의 SEC가 높은 것은 생산유량이 매우 낮고(전체 생산량의 91%를 1단에서 담당) 2단 브로워가 상시가동(30초 ON/OFF) 되는 운전방식 때문임



그림 39. 침지식 UF 운전모드별 SEC 비교



그림 37. 2단 가동시 HMI 화면

④ 2단 역세 : 스트레이너 펌프 + 2단 브로워(30sec 가동 후 off) -> 2단 생산수 펌 프 -> 2단 드레인 펌프-> 2단 생산수 펌프



그림 38. 2단 역세시 HMI 화면

표 9.	침지식	UF	1단	및	2단의	SEC	분석	결과	요약
------	-----	----	----	---	-----	-----	----	----	----

운전조건	적산전력량 (kwh)	1단 생산유량 (m ³⁾	2단 생산유량 (m ³ )	전체 생산유량 (m ³ )	SEC (kwh/m ³ )
1단, 2단 동시 운전	28.83	51.21	4.97	56.17	0.51
1단 단독 운전**	1.69	4.33		4.33	0.39
2단 단독 운전**	1.86		0.25	0.25	7.37

* 2018.10.05. 운전데이터 이용

** 1단, 2단 단독운전한 데이터로 계산(전체 운영시간의 각 10%, 5% 이하 수준)

(3) 동일한 전전처리 조건에서(DAF 유입유량 8.3 m³/h, 포화기 압력 5 bar) 침지식 UF 운전 플럭스 변화에 따른 SEC 비교 결과, 운전 플럭스가 증가할수록 동일 처리수량 확보를 위한 여과시간이 감소하여 침지식 UF 1단 및 2단 모두 SEC 가 감소하는 경향을 나타냄



그림 40. 플럭스 변화에 따른 UF 에너지 소모 변화

(4) 침지식 UF의 회수율을 변경하여 SEC 비교 결과, 회수율이 높아질수록 침지식 UF 공정의 전체적인 SEC는 감소하나 침지식 UF 2단의 SEC는 다소 증가하는 결과를 보임



그림 41. 회수율 변화에 따른 UF 에너지 소모 변화

(5) 동일한 전전처리 조건에서(DAF 유입유량 10 m³/h, 포화기 압력 5 bar, 응집제 주입량 5ppm) 침지식 UF 2단 브로워 가동시간 변동에 따른 SEC 비교 결과, 브로워 가동시간이 감소함에 따라 SEC는 감소하는 경향을 보임. 단, 아래 결 과의 2단 브로워 가동시간 30/60 및 30/90의 SEC 데이터는 각각 1일치 데이터 에서 계산한 값으로 정확한 값을 확보하기 위해서는 반복 실험이 필요함



그림 42. 브로워 조건변화에 따른 UF 에너지 소모 변화

다. 스케일업을 고려한 DAF 공정 에너지 소모 분석

(1) 대산 파일럿플랜트 운영결과를 바탕으로 DAF 최적 설계·운영 조건을 다음과 같이 선정함

표 10. DAF 최적 설계·운영 조건

구분	설계 및 관측값				
유입유량 (m ³ /hr)	10 m³/hr (실측량 바탕 9.25 m³/hr)				
포화기 압력 (bar; kgf/cm ² )	5 bar				
응집제 주입량 (ppm; mg/L)	2 ppm				
순환수 유량(m ³ /hr)	2 m ³ /hr				
순환율(%)	20 %				
응집지 면적(m ² )	1.4 m ²				
표면 부하율(m³/m²・h)	7.14 m ³ /m ² ·h (실측량 바탕 6.6 m ³ /m ² ·h)				
탁도 제거율(%)	평균 75% (안정화 후 80~88%)				

(2) 대산 파일럿플랜트 DAF 공정 설계서 및 운영결과를 바탕으로 스케일업을 위 한 주요 요소인 G/L ratio를 계산함. 파일럿 특성상, DAF 공정과 침지식 UF 공정이 1개의 컴프레셔를 공통으로 사용하고 있기 때문에 DAF 공정의 공기 소비량만을 별도로 계산하는 과정이 필요함

• 콤프레셔 생산유량은 10.8m³/hr(설계서 참조), 일일 가동비는 약 60%
• 최적 운전조건으로 가동된 10/11 기준, 플랜트 총 가동 시간은 6.81
이며, 콤프레셔 생산공기량은 44.12m³(10.8 x 0.6 x 6.81)
• UF 1단 필요 공기량 : 43 m3/h; 1회 15초 가동 = 0.18m ³
• UF 1단 브로워 가동 : 4 분당 역세 4분시 15초 가동; 0.81시간당 1회
• 10월 11일 총 가동 회수: 약 8.4회 가동 (6.81/0.81)
• 일일 역세시 1단 블로워 공기 주입량 :8.4 x 0.18 = 1.512 m3
• UF 2단 필요 공기량 : 7 m³/h
• UF 2단 브로워 가동 : 1분당 30초, 6.81hr 중 204.5분 순 가동; 3.4 hr 가동
• $7 \times 3.4 = 23.8 \text{m}^3$
• 1단 2단 공기 소비량 : 25.312 m ³
• DAF 공기 소비량 = 44.12 - 25.312 = 18.804
DAF 대 UF 공기 소비량 = 43 : 57
• DAF G/L Ratio: 18.804m ³ / 63.0247 m ³ = 0.298

(3) 위에서 계산된 G/L ratio를 적용하여 스케일업 시 콤프레셔 용량을 산정하였 으며, 대산파일럿플랜트의 공기압축기 역률을 고려함

- 10,000 m³/d 플랜트 기준 공기 소모량 계산

$10000m^{3}$	$0.298_{gas}$	d	hr	1000L	_	2060 I /min	liquid
d	Liquid	24hr	60min	min	_	2009L/ IIIII	nquiu

#### 표 11. Specifications & Dimensions

				입 죽	21	-	-		100	
	8력 중력	1일 팩	공기함	직경(행정자) 신입수	회전	월 / 명 프 월	Size	운임 이전학	일이×목×놀이	중량
	kW(HP)	kgt/m/G	e/min		r.p.m		PF	e	mmxtomxtom	
GH-1	0,75(1)		138	$65 \times 40 \times 1$	1040	53	1/2 B x 2	0,25	1090×450× 760	73
H-2	1.5(2)		222	65 x 67 x 2	500	85	1/2 B x 2	0,3	1120×430× 900	105
H-3	2,2(3)		370	77 x 89 x 2	450	124	1/2 B x 2	1,0	1200×540×1100	160
NH-5	3,7(5)		618	90 x 108 x 2	450	148	1/2 B x 2	1,3	1450×520×1090	192
NH-7	5,5(7,5)	7,5-9,9	934	90 x 108 x 2	680	148	1/2 B x 2	1,3	1450×520×1090	192
NH-10	7,5(10)		1272	$90 \times 100 \times 4$	500	240	18×1	2,0	1670×600×1090	325
NH-15	11.0(15)		1909	$90 \times 100 \times 4$	750	280	1 B x 1	2,0	1810x600x1090	345
NH-20	15,0(20)		2518	90 x 100 x 6	660	280	1 B x 1	9,0	1810:600:1200	514
NH-208	15,0(20)		2518	90 x 100 x 6	660	50	1 B x 1	3,0	1000×800×1650	530

- 대산 파일럿플랜트 공기압축기 역률(0.66)과 동일하다고 가정하면, 10,000
   m3/d 플랜트 공기압축기의 정격전력량은 15kW× √3 ×0.66 = 17kW로 계산되며, 24시간 가동시 일일 전력소모는 약 592.36 kWh/d
- (4) 순환율 20%를 기준으로 스케일업 시 DAF 순환수 펌프의 전력소모량을 계산 하였으며, 대산 파일럿플랜트 순환수 펌프의 역률을 고려함
  - 10,000 m3/d 플랜트 기준 펌프 전력량 계산

	1000 kg	$2000m^3$	d	hr	min	5 bar	10m	$kW \bullet \sec$	_	15 12kW/d
0.75	$m^3$	d	24hr	60min	60sec		bar	$102kg \cdot m$	-	15.15KW/U

- 24시간 가동 시 363.12kWh/d이며, 2단상을 3단상으로 연결시의 역률을 0.95
   라 가정하면, 전력소모는 363.12kWh×√3 × 0.95 = 597.29kWh/d 로 예상됨
- (5) 위에서 언급한 최적 설계·운영조건을 근거로 DAF 공정 용량별 예상 SEC를 비교함. 시설용량이 증가할수록 SEC가 감소하는 경향을 보이나, 50,000 m³/d 이후에는 변화가 거의 없는 것으로 나타남. 또한, 시설용량 5,000 m³/d에서 SEC가 증가한 이유는 기성 컴프레셔에서 적합한 용량의 부재로 과용량을 사 용하게 되기 때문. (본 계산에서는 DAF 공정의 주요 설비인 순환수 펌프와 컴 프레셔만 반영하였고 스크래퍼 및 약품펌프 등의 전력소모는 고려하지 않음)



그림 43. DAF 공정 설계유량별 SEC 변화

- 용량 증가에 따라 펌프 효율이 높아짐을 고려하여 펌프 효율은 65~75% 범 위를 적용하였으며 본 계산에 사용한 컴프레셔, 펌프의 용량 및 정격전력 정보는 다음과 같음

#### 표 12. 컴프레셔, 펌프 용량 및 정격전력 정보

ompressor	Max, W pres	lorking sure	Capi	acity	Motor	Motor Power		Dimension (LxWxH)	Weight	Airoutle
Type	kgt/bitG	psig	m*/roin	ofm	kW	HP	dB(A)	mm	kg	A(B)
	7.0	100	3,90	138						
AS31	8,5	120	3.70	130	22	30	63	1400x830x1350	700	25(1)
	9,5	135	3,00	106						
	7.0	100	4,80	170						
AS41	8.5	120	4,30	152	30	40	65	1400x830x1350	785	25(1)
	9.5	135	3.80	134						
	7.0	100	6,50	230						
AS51	8,5	120	5,80	205	37	50	65	1660×1030×1607	1030	40(13)
	9,5	135	5.30	187						
	7,0	100	10,30	364						
AS76	8.5	120	9,00	318	55	75	72	2000x1210x1857	1630	50(2)
	9.5	135	8.30	293						
	7,0	100	13,70	483						
AS102	8,5	120	12.30	434	75	100	75	2000x1210x1857	1603	50(2)
	9.5	135	10,30	363						
A \$151	7,0	100	21,30	750						
AS151	8.5	120	18,50	653	110	150	78	2550x1470x2156	2785	65(21)
	9.5	135	16.60	586						
	7.0	100	28,10	990						
AS201	8,5	120	24,80	875	150	200	79	2700x1640x2156	2950	80(3)
	9,5	135	24,50	864						
	7,0	100	33,50	1180						
AS251	8.5	120	29.50	10.40	190	250	81	2700x1640x2156	3250	80(3)
	9.5	135	27,50	970						
	7,0	100	41,66	1467						
AS301	9,0	128	36,44	1285	225	300	84	3500x1940x2300	6200	100(4)
	13,0	185	29,13	1027						
	7,0	100	48,89	1724						
AS351	9.0	128	43,28	1526	265	350	87	3500×1940×2300	6350	100(4)
	13,0	185	35,36	1247						
	7,0	100	53,30	1880						
AS401	9.0	128	48,34	1704	300	400	89	3500×1940×2300	6430	100(4)
	13.0	185	39,51	1393						
	7.0	100	63.96	2255						
AS501	9,0	128	59,28	2090	375	500	91	3800x2140x2450	6510	125(5)
	13.0	185	50.23	1770						

	베어형(Bare Type)
	(Pressure Switch System)
0	압력스위치에 의해 운전, 정지로 절환되는 방식입니다.
0	10HP 이상의 제품은 복렬 구동방식의 구조로 제작 되어 있습니다.



0 압력 O 10HF

Spec.	Model	AC-BIPA1	AC-B2PA1	AC-B3PA1	AC-B5PA1	AC-B7,5PA1	AC-BIOPA2	AC-B15PA2
Motor	KW0HP)	0,75(1)	1,5(2)	2.2(3)	3,7(5)	5.5(7.5)	7,5(10)	11(15)
Bore x Stroke	mm	60x50	82	50		90	x60	
No. of Cylinder	-		1		2	3	2×2	3×2
en e	LPM	141	285	417	657	985	1314	1970
Pision Displacement	CFM	4,98	10.1	14,7	23.2	34,8	46.4	69,6
P	LPM	84	165	255	430	640	850	1250
Free Air Dervery	CFM	3.0	5,8	9.0	15.1	22,6	30,2	45.2
March Provide	kgl/m/(g)				8,0			
Max, working Pressure	psi(g)				99.6			
Air Reciver Tank Volume	Q	75	75	140	16	10	260	280
Air Outlet	A(B)		15A	1/2)		15A(1/2)	20A(3/4)	25A(1)
Dimension (LxWxH)	mm	1160x450x860	1160x450x900	1280x450x920	1460x530x990	1460x530x1090	1700x620x1100	1830x640x122
Weight	ka	90	110	165	195	235	360	500

SPECIFICATION

모델명		AR5(S)	AR7(S)	AR10(S)	AR15(S)	AR20(S)
출력	KW(HP)	3,7(5)	5,5(7,5)	7,5(10)	11(15)	15(20)
실린더 수	EA	2	2	4	4	6
실린더 직경×행정	mm	90×108	90×108	90×100	90×100	90×100
피스톤 배제체적	2 /min	618	934	1272	1909	2519
회전 수	rpm	450	680	500	750	660
최고사용압력	kgt/cm ²	9.9	9.9	9.9	9,9	9,9
안전밸브 작동압력	kgt/cm ²	10,8	10.8	10.8	10,8	10,8
탱크용량	2	150(500)	150(500)	240(500)	280(500)	280(500)
토출배관	A	15	15	25	25	25
皆臣人役		B88×2	B90×3	B92×3	B96×3	B97×3
운전방식				연속/단속		
	L(mm)	1440(1830)	1440(1830)	1705(1830)	1825(1830)	1825(1830)
외형치수	W(mm)	570(690)	570(690)	630(690)	630(690)	660(690)
	H(mm)	1100(1380)	1100(1380)	1135(1300)	1135(1300)	1305(1480)
委員	ka	221(351)	246(376)	362(441)	398(452)	461(515)

### 라. 스케일업을 고려한 침지식 UF 공정 에너지 소모 분석

### (1) 대산 파일럿플랜트 운영결과를 바탕으로 UF 최적 설계·운영 조건을 다음과 같이 선정함

#### 표 13. UF 최적 설계·운영 조건

구분	설계·운영 조건
운전방식	1단 Full-drain + 2단 Continuous(대산파일럿 동일)
회수율	총 99%
막여과유속	1단 1.1 m³/m²·d, 2단 0.5 m³/m²·d

(2) 대산 파일럿플랜트 침지식 UF 공정 설계서 및 운영결과를 바탕으로 스케일업

을 위한 주요 요소인 G/L ratio를 계산함

- DAF G/L Ratio 계산과정의 근거로부터
- UF 1단 필요 공기량 : 1.512 m³
- UF 1단 생산수 생산량 : 54.326 m³
- UF 2단 필요 공기량 : 23.8 m³
- UF 2단 생산수 생산량 : 5.703 m³
- 1단 2단 및 2단 G/L Ratio 계산
- UF 1단 G/L Ratio: 1.512 m³ / 54.326 m³= 0.0278
- UF 2단 G/L Ratio: 23.8m³ / 5.703 m³ = 4.172

(3) 위에서 언급한 최적 설계·운영조건을 근거로 침지식 UF 공정 용량별 예상 SEC를 비교함. 시설용량이 증가할수록 SEC가 감소하는 경향을 보임



### 2.1.5 국내 T/B 단위공정별 수질 분석

가. 국내 T/B 해수담수 모형플랜트 공정 개요



그림 45. 국내 T/B 해수담수 모형플랜트 공정도

나. 국내 T/B 해수담수 모형플랜트 수질분석 결과

(1) 대산 해수담수화플랜트 공정별 처리 효율 평가를 위해 수질 분석 수행

- 총 3회(10/22, 12/5, 12/11) 채수, 해수원수, DAF, MTBF, 침지식UF, 가압식 UF, C/F, SWRO, BWRO, 폐수 방류수에 대해 수질분석 실시
- 해수원수 공정별 유입/처리/농축수 및 폐수방류수에 대하여 45개 항목 수질 분석 진행

#### 표 14. 샘플링 및 수질분석 항목

샘플링 항목	10/22	12/5	12/11
해수 원수(파일럿)	С	С	С
DAF 유입수			A
DAF 처리수	A	А	A
DAF 농축수		В	В
MTBF 유입수			A
MTBF 처리수	A	А	А
침지식 UF 1단 처리수			А
침지식 UF 2단 처리수			А
침지식 UF 처리수(통합)	A	А	А
가압식 UF 처리수	А	А	А
C/F 유입수			А
C/F 유출수	А	А	А
SWRO 처리수	А	А	А
SWRO 농축수		В	В
BWRO 처리수	А	А	А
BWRO 농축수		В	В
폐수 방류수		В	В
*수질분석 항목 A: TDS, COD, T	OC, T-P, T-N, 철, ፣	광간, 알루미늄, 클로로	필-a, 경도, 알칼리도,
용매추출유분,	칼슘, 마그네슘, 나	트륨, 칼륨, 바륨,	스트론튬, 중탄산염,
황산이온, 염소	이온, 불소, 인산염인,	실리카, 브롬, 붕소, 염튼	ẻ, pH
*수질분석 항목 B: 수질분석 항목	루 A + 납, 카드뮴,	비소, 수은, 구리, 여	아연, 크롬6가, 시안,
질산성질소,	아질산성질소, 암모	니아성질소, 용존성층	충질소, 용존성총인,
용존무기질소,	용존무기인, 총대장균균	-	
*수질분석 항목 C: 수질분석 항목	루 B + 전기전도도		

- TDS/전기전도도 비는 해수 원수 0.933, DAF 농축수 0.934, SWRO 농축수 0.901, BWRO 농축수 0.607, 폐수 방류수 0.869로 나타남

### 표 15. 해수담수 모형플랜트 단위공정별 수질분석 결과

수질 측정 항목	단위	해수 원수 (C)	DAF 유입수 (A)	DAF 처리수 (A)	DAF 농축수 (B)	MTBF 유입수 (A)	MTBF 처리수 (A)	침지식UF 1단 처리수 (A)	침지식UF 2단 처리수 (A)	침지식UF 처리수(통합) (A)	가압식UF 처리수 (A)	C/F 유입수 (A)	C/F 유출수 (A)	SWRO 처리수 (A)	SWRO 농축수 (B)	BWRO 처리수 (A)	BWRO 농축수 (B)	폐수 방류수 (B)
SDI	-	-	5.34	4.30	-	-	4.22	-	-	2.44	1.87	-	-	-	-	-	-	-
TSS	mg/L	-	52.56	58.36	24966	-	18.03	-	-	17.51	16.00	-	-	-	-	-	-	-
전기전도도	mS/cm	38.11	-	-	39.30	-	-	-	-	-	-	-	-	-	58.25	-	467.50 (μS/cm)	39.85
TDS	mg/L	35544	32800	34100	36700	32100	33100	32800	33200	33466	34066	33600	33200	207	52500	167	284	34650
COD	mg/L	2.60	20.4	2.98	211.00	16.4	7.8	15.40	10.40	4.73	4.20	10.4	4.53	1.40	20.00	1.26	4.60	8.90
TOC	mg/L	4.28	26.99	4.16	380.75	27.5	10.00	26.90	27.00	9.68	9.71	26.0	9.38	불검출	23.06	불검출	불검출	13
총인(T-P)	mg/L	0.06	0.0544	0.02	0.87	0.0582	0.02	0.01	0.03	0.03	0.03	0.0377	0.03	0.02	0.63	0.02	0.01	0.01
총질소(T-N)	mg/L	0.95	1.5675	0.67	1.46	1.372	0.58	0.32	0.48	0.52	0.55	0.255	0.57	0.09	0.94	0.09	0.04	1.27
납(Pb)	μg/L	불검출	-	-	불검출	-	-	-	-	-	-	-	-	-	불검출	-	불검출	불검출
카드뮴(Cd)	μg/L	불검출	-	-	불검출	-	-	-	-	-	-	-	-	-	불검출	-	불검출	불검출
비소(As)	μg/L	불검출	-	-	불검출	-	-	-	-	-	-	-	-	-	불검출	-	불검출	불검출
수은(Hg)	μg/L	불검출	-	-	불검출	-	-	-	-	-	-	-	-	-	불검출	-	불검출	불검출
구리(Cu)	μg/L	1.78	-	-	1.15	-	-	-	-	-	-	-	-	-	2.70	-	2.30	1.80
아연(Zn)	μg/L	15.30	-	-	12.23	-	-	-	-	-	-	-	-	-	14.00	-	6.25	12.40
크롬6가(Cr ⁶ *)	μg/L	1.60	-	-	불검출	-	-	-	-	-	-	-	-	-	불검출	-	불검출	불검출
시안(CN)	mg/L	불검출	-	-	불검출	-	-	-	-	-	-	-	-	-	불검출	-	불검출	불검출
철(Fe)	mg/L	104.84	86.6	92.29	92.78	73.4	74.63	69.40	74.20	70.60	82.93	56.8	31.70	44.47	56.20	19.83	13.70	23.00
망간(Mn)	μg/L	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
알루미늄(Al)	mg/L	44.04	62.3	78.29	115.75	60.2	59.27	58.40	61.40	52.87	58.50	50.1	50.53	11.90	120.50	38.27	18.80	25.70
질산성질소(NO ₃ -N)	mg/L	0.21	-	-	0.11	-	-	-	-	-	-	-	-	-	0.05	-	0.01	0.07
아질산성질소(NO ₂ -N)	mg/L	0.06	-	-	0.07	-	-	-	-	-	-	-	-	-	0.01	-	0.01	0.01
암모니아성질소(NH₂-N)	mg/L	0.08	-	-	0.07	-	-	-	-	-	-	-	-	-	0.01	-	0.01	0.01
용존성총질소(DTN)	mg/L	0.68	-	-	1.04	-	-	-	-	-	-	-	-	-	0.67	-	0.01	0.93

- 39 -

수질 측정 항목	단위	해수 원수 (C)	DAF 유입수 (A)	DAF 처리수 (A)	DAF 농축수 (B)	MTBF 유입수 (A)	MTBF 처리수 (A)	침지식UF 1단 처리수 (A)	침지식UF 2단 처리수 (A)	침지식UF 처리수(통합) (A)	가압식UF 처리수 (A)	C/F 유입수 (A)	C/F 유출수 (A)	SWRO 처리수 (A)	SWRO 농축수 (B)	BWRO 처리수 (A)	BWRO 농축수 (B)	폐수 방류수 (B)
용존성총인(DTP)	mg/L	0.05	-	-	0.03	-	-	-	-	-	-	-	-	-	0.02	-	불검출	0
클로로필-a	mg/m3	3.78	1.2	2.59	604.75	1.9	1.87	1.60	1.50	1.87	2.00	1.6	2.17	2.13	1.50	2.00	1.70	2.45
용존무기질소(DIN)	mg/L	0.27	-	-	0.09	-	-	-	-	-	-	-	-	-	0.07	-	0.03	0.06
용존무기인(DIP)	mg/L	0.03	-	-	0.04	-	-	-	-	-	-	-	-	-	0.00	-	0.00	0.00
경도	mg/L	3298	5860	2904	5757	5700	3533	5920	5710	3583	3627	5850	3650	54	8420	45	616	5145
알칼리도	mg/L	110.89	108	104.89	317.50	106	107	104.00	107.00	107.33	108.67	104	102.00	1.17	170.00	1.83	1.00	108.50
총대장균군	MPN/ 100 mL	<1.8	-	-	<1.8	-	-	-	-	-	-	-	-	-	<1.8	-	<1.8	<1.8
용매추출유분	μg/L	0.43	0.086	0.25	0.53	0.11	0.15	0.12	0.08	0.10	0.14	0.07	0.19	0.10	0.15	0.08	0.09	0.10
칼슘(Ca)	mg/L	275.33	383	278.11	483.25	368	316	375.55	374.75	299.22	331.00	382	353.20	68.71	538.50	67.81	13.19	357.50
마그네슘(Mg)	mg/L	634	1190	625.	1105	1160	752	1210	1160	749	777	1190	761	38	1755	34	11	1017
나트륨(Na)	mg/L	7440	11100	6625	9195	9860	7673	11300	10100	7266	7160	10700	7633	679	16500	648	79	970
칼륨(K)	mg/L	327.56	373	323.22	377.75	375	429	384.95	387.70	309.37	296.93	380	282.02	51.61	584.00	155.55	24.07	337.50
바륨(Ba)	μg/L	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
스트론튬(Sr)	μg/L	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출	불검출
중탄산염(HCO ₃ )	mg/L	110	107	104	316	106	106	103	106	106	108	104	101	1	169	1	1	108
황산이온(SO4 ²⁻ )	mg/L	2300	2420	2373	2215	2370	2256	2350	2160	1960	2163	2480	2440	2.62	3980	0.96	5.85	3365
염소이온(Cl ⁻ )	mg/L	19411	18500	18211	16575	17500	17433	17500	16400	14700	16266	18300	18066	27.85	28250	4.26	133.15	24700
불소(F)	μg/L	1609	1094	1236	1346	1108	1364	1132	1154	1103	1562	1140	1372	183	2288	578	361	2220
인산염인(PO4-P)	mg/L	0.03	0.02	0.02	0.11	0.03	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.19	0.01	0.00	0.00
실리카(SiO ₂ )	μg/L	399.07	377.1	370.57	531.13	258	345.07	339.10	362.30	399.54	401.38	375	401.89	7.41	555.80	7.27	0.50	351.50
브롬(Br)	mg/L	63.84	75.48	61.09	75.71	73.0	65.30	71.78	70.14	55.36	64.05	77.9	65.29	0.14	104.12	0.30	0.76	84.71
붕소(B)	mg/L	19.00	불검출	불검출	불검출	불검출	12.00	불검출	불검출	24	31	불검출	17	불검출	불검출	불검출	불검출	불검출
염분(psu)	psu	26.64	28.61	26.28	28.57	28.0	26.67	28.32	28.73	26.66	26.90	28.5	26.77	0.05	45.10	0.02	0.26	28.82
pH	-	7.83	7.732	7.69	7.30	7.5	7.64	7.51	7.63	7.70	7.70	7.7	7.50	7.14	7.41	7.24	6.08	7.36

* 수질 측정 항목 및 공정에 따른 1~3회 분석 평균값을 나타냄

#### (2) 수질 분석 결과를 바탕으로 물질수지 분석 수행

- 물질수지 분석을 통해 단위 공정별 수질 예측 및 실제 수질분석 데이터와 비교/검증 실시
- TDS의 경우 SWRO(99.4%), BWRO(14.4%)의 제거율을 보이며, 전전처리 및 전처리 단계에서는 거의 제거되지 않음

丑	16.	단위공정별	TDS	및	SDI	제거율

다이고거	전전	처리	전기	허리	CIE	SWIDO	DW/DO	
21578	DAF	MTBF	침지식UF	가압식UF	C/F	SWRO	DWRO	
TDS 제거율	-	-	2.4%	4.1%	2.7%	99.4%	14.4%	
SDI 감소율	19.4%	20.9%	43.2%	55.6%	-	-	-	

 - 단위 공정별 유량 및 TDS 데이터를 바탕으로 유입수, 생산수 및 농축수에 대한 분석결과 물질수지를 만족함

- 41 -



그림 46. 해수담수 모형플랜트 물질수지도

다. 전처리 대응공정 UV₂₅₄ 수질분석 결과

 (1) 총 운전시간 기준, 단위공정별 UV₂₅₄ 평균값은 원수 0.0518±0.0326cm⁻¹, DAF 처리수 0.0501±0.0314cm⁻¹, 침지식 UF 처리수 해수원수 0.0518±0.0360cm⁻¹로 유기물 변화는 거의 없음



그림 47. 해수원수, DAF 처리수, 침지식 UF 처리수 UV254 홉광도 비교

(2) 잔류철에 의한 UV₂₅₄ 영향 검토

- 문헌조사 결과 잔류철 농도(Fe³⁺)가 UV₂₅₄ 흡광도에 영향을 미치는 것으로 나 타남에 따라 해수 원수, DAF 처리수, 침지식 UF 처리수의 UV₂₅₄ 흡광도에 대하여 잔류철 농도(Fe³⁺) 영향을 검토함

Compound	Molar Absorbtion Coefficient (M ⁻¹ cm ⁻¹ )	Mass-based absorbance (L/mg_cm ⁻¹ )	Impact Threshold Concentration ³ (mg/L)
Ozone (O3)(aqueous)	3,250	0.0677	0.071
Ferric iron (Fe ³⁺ )	4,716	0.0844	0.057
Permanganate(MnO ₄ ⁻ )	667	0.0055	0.91
Thiosulfate ion(S2O32)	201	0.00178	2.7
Hyochlorite ion(CIO*)	29.5	0.000573	8.4
Hydrogen peroxide(H ₂ O ₂ )	18.7	0.00055	8.7
Ferrous iron(Fe2*)	28	0.0005	9.6
Sulfite ion(SO32-)	16.5	0.000206	23
Zinc ion(Zn2*)	1.7	0.000026	187
Ammonia(NH ₃ )	NSA	NSA	N/A
Ammonium ion(NH4*)	NSA	NSA	N/A
Calcium ion(Ca2*)	NSA	NSA	N/A
Hydroxide ion(OH ⁻ )	NSA	NSA	N/A
Magnesium ion(Mg2*)	NSA	NSA	N/A
Manganese ion(Mn2*)	NSA	NSA	N/A
Phosphate species	NSA	NSA	N/A
Sulfate ion(SO ₂ ² )	NSA	NSA	N/A

그림 48. Fe³⁺가 UV₂₅₄ 흡광도에 미치는 영향



그림 49. 잔류철 농도와 UV254 비교(해수원수, DAF 처리수, 침지식 UF 처리수)

 · 잔류철 농도(Fe³⁺)와 UV₂₅₄ 흡광도에 대하여 상관성 분석을 수행하였으나, 통 계적으로 유의한 수준의 상관이 없는 것으로 확인되어, UV₂₅₄ 데이터에 대하 여 별도 보정을 하지 않음

표 17. 잔류철 농도(Fe³⁺)와 UV₂₅₄ 흡광도에 대한 상관성 분석

	원수	DAF 처리수	침지식UF 처리수		
피어슨 상관분석계수	-0.1444	-0.1280	-0.0299		
(p-value)	(0.1109)	(0.1618)	(0.7480)		
스피어만 상관분석계수	-0.1684	-0.1592	-0.1885		
(p-value)	(0.0626)	(0.0811)	(0.0409)		
비고*	상관성 없음	상관없 없음	상관없 없음		

*상관계수는 -1~1의 값으로 양·음의 상관관계를 나타내며, P-value < 0.05인 경우 통계적으 로 유의한 수준의 상관관계가 있음

(3) 조위차에 의한 UV₂₅₄ 영향 검토

- 조위차가 수질에 영향을 미칠 수 있음에 따라 원수 UV₂₅₄ 홉광도와 상관성 분석을 수행한 결과, 상관성이 없는 것으로 확인됨
  - · 피어슨 상관계수(p-value)는 -0.0618(0.4814), 스피어만 순위상관계수 (p-value)는 -0.0633(0.4707)으로 통계적 상관성이 없음





### 2.1.6 UAE 플랜트 운영을 위한 해수담수플랜트 통합 운영프로그램 구축

가. (단위공정 기본 운영프로그램) MTBF, DAF, UF, SWRO, BWRO 단위공정에 대 한 단독 및 통합 운전을 위한 i-water 기반 해수담수플랜트 기본 운영 프로그 램을 구축함



그림 51. UAE 플랜트 해수담수 통합 운영프로그램 HMI 화면 구성

나. 단위공정별 최적 운영프로그램

(1) (DAF 공정 최적화 모듈) 유량, 온도, pH, 탁도 등 다양한 유입 수질 조건을 고려하여 수학모델과 경험식간의 오차를 최소화하고 운영 비용을 최소화 하는 최적 DAF 운영 조건(응집제 주입량, 포화기 압력, 순환율)을 제시함(상세 내용 은 '2.1.1 DAF 운영 알고리즘 개발' 참조)



그림 52. DAF-Optimization

 (2) (UF 공정 최적화 모듈) UF 공정 운영데이터(유량, 온도, TMP 등)를 기반으로 TMP를 예측하며, 이를 바탕으로 CIP 기준 시점까지 남은 기간을 예측하여 운 영자에게 제시함(상세 내용은 '2.1.2 UF 최적 CIP 주기 예측 알고리즘 개 발' 참조)



그림 53. UF-Optimization

(3) (RO 공정 최적화 모듈) RO 공정의 유입수 조건(유량, 온도, 농도, 회수율, 운	
전압력 등)을 기반으로 에너지 소모 등을 고려한 최적 운영 조건을 제시하며,	
이를 바탕으로 시뮬레이션을 통해 일정 기간의 운영비용을 산정하여 최적 막	
세정 주기·횟수, 막 교체시기를 제시함(상세 내용은 '2.1.3 RO 최적 운영 로	
직 개발' 참조)	

and the second second	-		3 41 52 M
H 118 - 10000	58008 - 18		
144 110 1		- / / -	
			-
104.17 3200	0.0.0	20.00 40.00	200
		Recovery Ratio [%] Open	ating Pressun
and the state of the state			
pumzation Result		And the second s	
Cleaning & F	teplacement	SWRO	
Cleaning & F Simulation Time [day] :	teplacement	SWRO Specific Energy Consumption [kWh/m³]	2 - 4
Cleaning & B Simulation Time [day] : Cleaning [times]	Replacement 1095 9	SWRO Specific Energy Consumption [kWh/m³] Permeate Flux [LMH]	2.4
Cleaning & E Simulation Time [day] : Cleaning (times)	Replacement 1095 9	SWR0 Specific Energy Consumption [kWh/m³] Permeate Flux [LMH] Permeate TDS Conc. [mg/L]	2 - 4 1 4 - 2
Cleaning & F Simulation Time [day] : Cleaning [times] Replacement [times]	Replacement 1095 9 2	SWRC Specific Energy Consumption [KWh/m'] Permeate Flux [LMH] Permeate TDS Conc. [mg/L] Operating Pressure [bar]	2,4 14, 2 43,
Cleaning & f Simulation Time [day] : Cleaning [times] Replacement [times] Electricity Cost [KRW/m ³ ]	Replacement 1095 9 2 2 6 0	Specific Energy Consumption [kWN/m ¹ ] Permeate Flux [LMH] Permeate TDS Conc. [mg/L] Operating Pressure [bar] Recovery Ratio [16]	2.4 14. 2 45. 40.
Cleaning & I Simulation Time (day) : Cleaning (times) Replacement [times] Electricity Cost [KRW/m ³ ] Chemical Cost [KRW/m ³ ]	Replacement 1095 2 2 6 0 3 5 8	Sterific Energy Consumption (WMI/m ¹ ) Permeate Flux [LMH] Permeate TOS Conc. [mg/1] Operating Pressure [bar] Recover Bato [54] BWRC	2 , 4 1 4 - 2 4 5 , 4 0 ,
Cleaning & Simulation Time [day] : Cleaning [dfmes] Replacement [dfmes] Electricity Cost [dRW/m] Chemical Cost [KRW/m] Membrane Replacement	Replacement 1095 2 2 6 0 3 5 8	Sweco Specific Energy Consumption (XVM/m) Permoate Flux (IAM) Permoate TOS Conc. (mg/1) Operating Pressure (Bar) Recovery Ratio (Nd Specific Energy Consumption (WWm/m)	2.4 14. 2 45. 40.
Cleaning & I Simulation Time (day) : Cleaning (times) Replacement (times) Electricity Cost (KIW/m ³ ) Chemical Cost (KIW/m ³ ) Membrane Replacement Cost (KIW/m ³ )	Replacement 1095 2 2 6 0 3 5 8 8 4	Sweat Specific Energy Consumption [XWI/m ² ] Fermate Flux [XMII] Permate TOS Conc. [mg/1] Operating Pressure [XMI] Recovery Ratio [54] Bwrac Specific Energy Consumption [XMI/m ² ] Permate Flux[RWI/m ² ] LXMI/m ² ]	2 . 4 1 4 . 2 4 5 . 4 0 . 9 0 . 1 1 .
Cleaning & Cleaning & Cleaning & Cleaning (Structure) Cleaning (Structure) Replacement (Structure) Electricity Cost (SKW/m ³ ) Chemical Cost (SKW/m ³ ) Membrane Replacement Operating Cost (SKW/m ³ )	Replacement 1095 2 6 0 3 5 8 8 4 7 0 2	Swelfic Energy Consumption [kWH/m*] Permaster Flux [JMH] Permaster TOS Conc. [mg/] Operating Pressure [bur] Becorey ratio [sit] Specific Energy Consumption [kWH/m*] Permaster Flux(BWHO 1st stage) [JMH]	2.4 14.2 45.40.0
Cleaning &	Replacement 1095 2 2 6 0 3 5 8 8 4 7 0 2	Sweet Specific Energy Consumption (WM/m ² ) Permeate Flux (MMI) Permeate TOS Cone. [mg/] Operating Pressure [tar] Recovery Failed (SI Specific Energy Consumption (WM/m ² ) Permeate Flux(WMO 1st stage) (MMI) Permeate Flux(WMO 1st stage) (MMI) Permeate Flux(WMO 1st stage) (MMI)	2 4 14 2 45 4 40 - 1 0 - 1 1 - 2 0 -
Clearing 1 (mes) Simulation Time (day): Clearing (firms) Replacement (firms) Electricity Cost (KRW/m ² ) Chemical Cost (KRW/m ² ) Membrane Replacement Cost (KRW/m ² ) Operating Cost (KRW/m ² ) Remaining Days until CI (Gday) Remaining Days	teplacement 1095 2 0 2 0 2 0 3 5 0 4 4 7 0 2 1 1 4	Sweld Specific Energy Consumption [kWH/m ² ] Permate Flux [kHH] Permate TOS Conc. [mg/1] Operating Pressure [kH] Recovery Ratio [si] Specific Energy Consumption [kMH/m ² ] Permate Flux(SWR0 2nd stage) [kHH] Permate Flux(SWR0 2nd stage) [kHH] Operating Pressure [kHH]	2.4 14. 2 45. 40. 1 1 20.

그림 54. RO-Optimization

(4) (에너지 최적화 모듈) 전력량계 설치를 통해 단위공정 및 요소 설비에 대한 실시간 에너지 소모를 측정하며, 기준값과 비교하여 에너지 소모를 분석함(그 림번호). 또한, 각 단위공정 및 전체 플랜트의 에너지 소모를 누적으로 확인할 수 있으며(그림번호) sankey chart를 통해 용도별 에너지 소모 분석결과(그림 번호)를 제시함(상세 내용은 '2.1.4 에너지 사용량 측정, 예측, 관리 기술 개발' 참조)

	Er	ergy usage measure	ement(Real-	time	e)						
This page displays the co	rrent energy consumption of	unit processes and total plant									
Tue Nov 27 13:1	7:08 2018										
	MTRE	Correct Deergy Consumption(kit) arrent Specific Energy Consumption(kith.et)	Current Ene	rgy (	Cons	ump	tion	State	us		
	2.50 KW		2.77 KM/V m								
	DAE	Pacingulation Pump		22	43	60	80	100	120	145	160
	5 50 KW 0 13 KWIV w	A 00 KW D.10 XWItew	MTBF	_	_			1			
	110	Feed Pump 5-20 AVV		20	40	60	80	100	120	540	160
	6.00 kW 0.14 kWtklw'	Backwash Pump	DAF	_	_	_	_	1			
Total Plant		D BD MW 0 02 KWhim		20	- 46	80	40	100	120	540	150
\$15.00 KW 2.76 KW/M e ¹		Feed Pump									
	SWRO	0.00 White (Cathoge Filter) High pressure Pump	0.15 KWh/m ²	20	÷.	-	÷.	100	120	140	56 180
	101.00 KW 2.42 KMTUN	90.00 kW 2.16 MWh/e ²	SWRO					-			
		Recirculation Pump	2.41 KWh/m ²	20	4	50	, iii	100	120	140	160
	BWRO	High pressure Pump	Divido								
	0.90 ktv 0.11 kWb/w	0.00 KW 0.07 KWheel	0 11 KWh/el	20	40	60	10	100	120	140	% 100

그림 55. Energy usage measurement

Plant Optimization Energy Usage X Plant Optim	nation Energy Usage X Plant Optimizati	ion Energy Usage × +	ter Found translation	E - ¢	IN ID
		at an a change the solution	a congradue	• 1	in the
	Energy u	sage Accumulate			
Shows the curtinue Accum	late of energy usage.				
Measure Iterus	SEC(kWhym3)				
(	-2.5	<u> </u>			
√ Stal design √ MTSF √ MTSF design √ CAF					
2 ⊂ Dae brign 2 ⊂ UF 2 ⊂ UF design 2 ⊂ SWRO 2 ⊂ SWRO 2 ⊂ SWRO design	15				
√ ■ twino √ ■ twino design	- 1				
	414 anno -0.50				
	andmal maar teg	/	the en	lane fan	Torne(day)
Smoothing				Ē	
			1		
		*			

그림 56. Energy usage accumulate



그림 58. 고압펌프 이상진단 기능 HMI 화면 구성

다. 해수담수플랜트 자산관리 기능은 플랜트 내 자산에 대한 효율적 유지관리를 목적으로 하며, 주요 설비 및 부품을 단계에 따라 분류하고 그에 대한 이력(설 치위치, 제조사, 취득일자, 모델명, 규격/사양, 현존가치, 감가상각비율 등)을 인 벤토리화 하여 관리함

Page	strey M do Name	As Code	OC MIM	157 008	NNT NIM	MRF 1MD	ACC YMD	NOD NAM	MOD SRC	PED CDF	MNG CDF
a	1 V-Notch Tank for MTEF	SOMUNCTERT10001DA	005801088001	MTRF UNR							
	2 MTBF Unit	SOMUNCPUPUTIODIDA	000801147001	MTDF Unit							
	3 MTBP UNI	SOMUNCPUPUT2001DA	0008012A1001	MTSP UNIT							
	4 MT8F Unit	SOMUNCPUPU13001DA	000901347001	MTEF UNIT							
story	5 Coopulation Tank	SDDUMCTKCT21001DA	006903189001	DAF Unit							
	6 D4F	SDOUMCPUPU20001DA	00G8820AT001	DAF Unit							
	7 Nr Saturator	SCOUNCEASA34001DA	006203447001	DAF Unit							
	8 Pre Treated Water Storage Tank	SOULINCTICST10001DA	006311033001	UP Unit							
£	9 Air Receiver Tank	SCOUNCTKA#20001DA	000332088001	DAF Unit							
	10 Filterted Water Storage Tank	SDSUMCTRST20001DA	000912399001	SWRO UKR							
	11 UF CEB Water Neutralization Tank	SDUUMCTRST01001DA	006890188001	UF Unit							
	12 SWRD Treated Water Storage Tank	SOGLINCTEST50002DA	006855083001	SIRG Unit							
	13 Potable Water Storage Tank	SOSUMCTEST10003DA	005/021068001	SWRD Unit							
	14 CIP Tank	SDCUMCTRST10001DA	000CP1088001	CIP Unit							
	15 "FeCI3 Injection Tank for Pre Treatment"	SDCUMCTION002DA	006811088001	CP Unit							
	16 NaOCI Injection Tank for Potable	SOCUMCTR/19003DA	00GCN1068001	CIP Unit							
	17 NaDCI Injection Tank for UF	SDCUMCTRI20004DA	00G3N2068001	CIP Unit							
	18 H2SO4 Injection Tank for UF	SDCUMCTRID0005DA	00G3N3068031	CIP Unit							
	19 NaCH Injection Tank for UP	SDCUMCTRIA0006DA	0005N4055001	CIP UHIE							
	20 585 Injection Tank	SDCUMCTRI50007DA	0068N5088001	CIP Unit							
	21 Anti-Scalant Injection Tank	SDCUMCTRI60008DA	00G3N6088001	OP Unit							
	22 NaOH Injection Tank for BINRO	SDCUMCTRIB0009DA	005CN3088001	CIP Unit							
	23 NaHCO3 Injection Tank	SDCUMCTION0010DA	005014088001	CIP Unit							
	24 CaCl2 Injection Tank	SDCUMCTR/B0011DA	00000115088001	CIP Unit							
	25 B/W Transfer Pump for MTEP	SCOUNCPPTP25001DA	0008025AP001	DAF Unit							
	26 DAF Rocycle Pump	SDDUMCPPRP33001DA	00G9D33AP001	DAF Unit							
	27 UF Feed Pump	SDUUMCPPFP11001DA	00G8F11AP001	UF Unit							
	28 UF Backwashing Pump	SOULINCPP8P21001DA	00G8P21AP001	UF Unit							
	29 SWRD Feed Pump	SDSUMCPPPP11001DA	00GCF11AP001	SWRD Ueit							
	30 SWRD High Pressure Pumps	SOSUMEPPHP33001DA	00GSF33AP001	SWIND Unit							
	31 Circulation Pump	SD5UMCPPCP41001DA	0003F41A2001	SWRO Unit							
	32 RD Rashing Pump	S05UMCPPTP01001DA	00GCP01AP001	SWRO Unit							
	33 BWRD High Pressure Pumps	SDEUMOPPHP01001DA	00GCF01AP001	<b>EWRO Unit</b>							
	34 OP Pump	SDCUMCPPTP11001DA	00GCP11AP001	CIP Unit							
	35 FeCI3 Injection pump for Pre-treatment	SDCUMCPPII11001DA	00G8N11AP001	CIP Unit							
	36 NaDCI Injection Pump for Potable	SDCUMCRRI11002DA	000CN11AP001	CIP Unit							
	37 NaOCI Injection Pump for UF CEB	SDCUMCPRI21003DA	0003N21AP001	CIP Unit							
	38 H2SO4 Injection Pump for UF CEB	SDCUMCPPIB1004DA	00GBN31AP001	CIP Unit							
aton.	39 NaOH Injection pump for UF CEB	SDCUMCPRI41005DA	00GBN41AP001	CIP Unit							
	42 SBS Injection Pump for SWRD	SDCUMCPPI/S1006DA	00GBN51AP001	CIP Usit							
6	41 Anti-scalant Injection Pump for SWRD	SDCUMCPPII61007DA	00G3N61AP001	CIP Unit							
	#3 And confield behavious from for BARPS	FOCULACION/1509EDA	0057313340055	215 1 to 4							
2 ×											
					_	_					_

그림 59. 해수담수플랜트 자산관리 기능 화면 구성



그림 57. Energy consumption analysis

### 2.1.7 해수담수화 공정 운영 프로그램 내 펌프 이상 진단 및 자산관리 모듈 추가 구축

- 가. UAE에 설치하는 1,000 m³/일 규모 해수담수 파일럿플랜트의 효율적 운영을 위 하여 개발한 역삼투 공정의 고압펌프 이상진단 모듈과 해수담수플랜트 자산관 리 모듈을 기존 제작한 통합 운영 프로그램에 추가 구축함
- 나. 고압펌프 이상 진단 기능은 펌프에 설치된 8개의 진동계로부터 수집된 값으로 부터 일시적이상(축정렬 불량, 베어링 결함, 하우징 변형 등), 공진, 공동현상, 서징현상 등에 대한 알람을 발생시켜주며, 운영자가 매뉴얼에 따라 데이터 트 렌드를 확인 후 대응함

### 2.2.1 해수담수화 플랜트 규모별 수압시스템 해석 소프트웨어 개발

가. 실용화 가능성 검토

- (1) 현재 상용화되어 있는 담수화 플랜트 전용 수압시스템 설계 프로그램은 없으며, 범용적으로 사용되는 수압 설계 프로그램은 해수담수화 플랜트 전처리공 정과 역삼투공정의 특성을 반영하기 어려워 해석의 정확성이 낮아지고 활용하 기 어려운 문제점이 있음.
- (2) 본 과제를 통해 개발 진행 중인 수압시스템 설계 프로그램은 이러한 단점을 보완하여 전처리 공정 및 역삼투공정 등의 해수담수화 플랜트의 장치 특성을 쉽게 반영하고, 설계를 3차원으로 수행하여 해석의 정확성을 향상시킬 수 있 어 국내/외 해수담수 플랜트의 배관 설계 시 활용성을 높일 수 있어 실용화 가능성이 높음
- (3) ISO 도면(대우건설)을 적용하여 1,000톤/일 규모 SWRO-BWRO 플랜트에 대하 여 배관해석을 수행함
- (4) 배관손실 에너지를 계산한 결과 배관 손실 정도는 0.6bar (0.026 kWh/m³)으로 매우 낮게 나타남
- (5) 관경을 20~30% 증가하였을 때, SEC 손실량은 총 0.005kWh/m³가 감소하였음
   그림 60. 기존 프로그램(pipenet)을 통한 1.000톤/일 규모 플랜트 배관 해석



그림 60. 기존 프로그램(pipenet)을 통한 1,000톤/일 규모 플랜트 배관 해석

표 18. SWRO UNIT 배관 해석 결과

SWRO							
اح [٨	유량	시작압력	종점압력	압력손실	에너지손실	SEC손실	
지역	(m³/day)	(bar)	(bar)	(bar)	(kW)	(kWh/m ³ )	
① 원수	1000	52.27	52.12	0.15	0.17	0.004	
の 노츠스(EDD 저 ㅎ)	1500	50.08	50.00	0.08	0.14	0.004	
실 중독구(EKD전, 추)	1500	52.27	52.12	0.15	0.26	0.006	
③ 원수합류 (①+②)	2500	52.12	52.00	0.12	0.35	0.009	
④ 생산수	1000	2.05	2.00	0.05	0.06	0.001	
소계				0.55	0.98	0.024	

#### 표 19. BWRO UNIT 배관 해석 결과

BWRO								
ر ا دا دا	유량	시작압력	종점압력	압력손실	에너지손실	SEC손실		
지적	(m³/day)	(bar)	(bar)	(bar)	(kW)	(kWh/m ³ )		
① lst stage 원수	253.5	5.04	5.00	0.04	0.012	0.001		
② lst stage 농축수	90	4.75	4.75	0.00	0	0		
③ 2nd stage 농축수	34.5	4.55	4.55	0.00	0	0		
④ 생산수	200	1.00	0.97	0.03	0.007	0.001		
소계				0.07	0.019	0.002		
총 손실량 합계				0.62	0.999	0.026		

나. 압력, 유량별 배관 해석 진행 (생산량 기준)

- (1) 기존 프로그램으로 1,000톤/일 규모 플랜트를 모사한 결과 배관 손실이 약
   0.09 kWh/m³ 정도로 계산 되며, RO 공정 압력이 55~70 bar로 변경될 경우 관
   로손실 변화정도는 0.02 kWh/m³ 정도로 계산됨
- (2) 관로 손실관련 반영은 설계에만 반영하고 운영에 반영하기 위해서는 정밀한 유체역학적 계산이 고려되어야 하므로 반영하지 않음
- (3) 유량 기준으로 배관 해석을 진행하였을 때에도, 0.05 kWh/m³ 정도로 계산되며 운영에는 반영하지 않음

### 표 20. 1,000톤/일 규모플랜트 압력별 배관 손실

Case 1	Intake	MTBF	UF	CF	SWRO			
유입유량(m³/day)	3086	3086	2778	2500	2500			
유입압력(bar)	3.00	1.00	3.00	2.00	55.00			
유출압력(bar)	3.00	0.50	1.00	1.50	54.00			
압력손실(bar)	0.526	0.014	0.02	0.011	0.4			
에너지손실(kW)	1.88	0.05	0.06	0.03	1.16			
SEC손실(kWh/m³)	0.045	0.001	0.002	0.001	0.028			
SEC 손실 합계(kWh/m³)								

Case 2	Intake	MIBF	UF	CF	SWRO
유입유량(m³/day)	3086	3086	2778	2500	2500
유입압력(bar)	3.30	1.10	3.30	2.20	60.50
유출압력(bar)	3.30	0.55	1.10	1.65	59.40
압력손실(bar)	0.526	0.014	0.04	0.011	0.56
에너지손실(kW)	1.88	0.05	0.13	0.03	1.62
SEC손실(kWh/m ³ )	0.045	0.001	0.003	0.001	0.039
		SEC	손실 합계(k'	Wh/m³)	0.089

SEC 손실 합계(kWh/m³)

Case 3	Intake	MTBF	UF	CF	SWRO		
유입유량(m³/day)	3086	3086	2778	2500	2500		
유입압력(bar)	3.60	1.20	3.60	2.40	66.00		
유출압력(bar)	3.60	0.60	1.20	1.80	64.80		
압력손실(bar)	0.526	0.015	0.043	0.011	0.62		
에너지손실(kW)	1.88	0.05	0.14	0.03	1.79		
SEC손실(kWh/m³)	0.045	0.001	0.003	0.001	0.043		
SEC 손실 합계(kWh/m³)							

	Case 4	Intake	MTBF	UF	CF	SWRO	
	유입유량(m³/day)	3086	3086	2778	2500	2500	
	유입압력(bar)	3.90	1.30	3.90	2.60	71.50	
	유출압력(bar)	3.90	0.65	1.30	1.95	70.20	
	압력손실(bar)	0.526	0.015	0.043	0.011	0.66	
	에너지손실(kW)	1.88	0.05	0.14	0.03	1.91	
	SEC손실(kWh/m ³ )	0.045	0.001	0.003	0.001	0.046	
SEC 손실 함계(kWh/m³)							

- 53 -

SEC 손실 합계(kWh/m³)

표 21. 1,000톤/일 규모플랜트 유량별 배관 손실

Case 1	Intake	MTBF	UF	CF	SWRO
유입유량(m³/day)	2468	2468	2222	2000	2000
유출유량(m³/day)	2468	2222	2000	2000	800
압력손실(bar)	0.52	0.014	0.019	0.011	0.22
에너지손실(kW)	1.48	0.04	0.05	0.03	0.51
SEC손실(kWh/m³)	0.036	0.001	0.001	0.001	0.012

SEC 손실 합계(kWh/m³)

Case 2	Intake	MTBF	UF	CF	SWRO
유입유량(m³/day)	2778	2778	2500	2250	2250
유입압력(bar)	2778	2500	2250	2250	900
압력손실(bar)	0.52	0.014	0.02	0.011	0.36
에너지손실(kW)	1.67	0.04	0.06	0.03	0.94
SEC손실(kWh/m ³ )	0.040	0.001	0.001	0.001	0.022

SEC 손실 합계(kWh/m³) 0.066

Case 3	Intake	MTBF	UF	CF	SWRO
유입유량(m³/day)	3086	3086	2778	2500	2500
유출압력(bar)	3086	2778	2500	2500	1000
압력손실(bar)	0.526	0.015	0.02	0.011	0.4
에너지손실(kW)	1.88	0.05	0.06	0.03	1.16
SEC손실(kWh/m ³ )	0.045	0.001	0.002	0.001	0.028

SEC 손실 합계(kWh/m³)

0.076

0.051

Case 4	Intake	MTBF	UF	CF	SWRO
유입유량(m³/day)	3395	3395	3056	2750	2750
유출압력(bar)	3395	3056	2750	2750	1100
압력손실(bar)	0.54	0.015	0.02	0.011	0.66
에너지손실(kW)	2.12	0.06	0.07	0.03	2.10
SEC손실(kWh/m ³ )	0.051	0.001	0.002	0.001	0.050

SEC 손실 합계(kWh/m³) 0.105

다. 대산 파일럿 플랜트 배관해석

#### (1) 대산 파일럿 플랜트의 ISO 도면 기준으로 배관해석을 진행하였음

(2) 실규모 플랜트에 비해 유량이 적어 압력 손실 및 에너지 손실량이 미세함

(3) 배관의 관경 및 길이를 변경하였을 때에도 에너지 손실량에 차이가 없음으로 최적화되어 있음을 확인



그림 61. 대산 파일럿 플랜트 배관도면

#### 표 22. 대산 파일럿 플랜트 배관 해석 결과

대산 파일럿 플랜트											
<i>۱</i> ۲	유량	시작압력	종점압력	압력손실	에너지손실	SEC손실					
시작	(m³/day)	(bar)	(bar)	(bar)	(kW)	(kWh/m³)					
① 원수-CF	300	1.52	1.5	0.02	0.00694	0.00017					
② CF-펌프	120	1.1	1	0.1	0.01388	0.00033					
③ CF-PX	180	1.07	1	0.07	0.01458	0.00035					
④ 펌프-RO (②+③)	300	55.13	55	0.13	0.04512	0.00108					
⑤ RO-생산수	120	1.15	1	0.15	0.02083	0.00050					
6 RO-PX	180	55	55	0	0	0.00575					
⑦ PX-브라인	180	1.1	1.05	0.05	0.01041	0.00025					
소계				0.52	0.11177	0.00268					

- 라. 해수담수화 소프트웨어 제작
- (1) 기존 프로그램 (pipenet)에서 해석할 수 없었던 항목을 개선하기 위하여 해수 담수화 플랜트 전용 소프트웨어 제작함
- (2) 해수담수화 플랜트 해석용 CFD 프로그램 기본 프레임워크 : 수치해석을 효육 적으로 수행하고 관리할 수 있는 응용, 통합 프로그램이며 모델링, 계산 및 결과를 효율적으로 분석 가능

(3) 파이프 경로 데이터나 시설물의 물성 데이터를 연계하여 이용할 수 있음

(4) 개발 규격 세부 내역

- Program framework interface module (GUI module) 제작
- 3D 파이프 경로 데이터, 결과 데이터(CSV data) 제작
- 파이프 경로 해석용 솔버 제작
- 해수담수화 플랜트용 시설물 분석 및 제작방안 수립 및 3D CAD 라이브러리 제작 진행
- 사용자 매뉴얼 제작

#### 표 23. 기존 프로그램과 개발하려는 프로그램의 차별성

기존 프로그램 (pipenet)	해수담수화 플랜트 소프트웨어
1D 모델만 생성 가능	3D 모델 생성 가능
(담수화 플랜트를 1차원으로 구성)	(담수화플랜트를 3D로 해석)
모델 생성시 실제크기를 고려한 축척	모델 생성시 실제크기를 고려한 축척
적용 불가능	적용 가능
에너지 소비량 SEC 계산 안됨	에너지 소비량과 SEC 계산 가능
단위 공정의 회수율이 100%가 아닐	단위공정의 회수율에 관계없이
경우 비연속적으로 해석 모델 구성	연속적으로 해석 모델 구성
ERD 적용이 불가능	ERD 적용 가능



그림 63. 해수담수화 플랜트 소프트웨어 3D CAD 라이브러리

### 2.2.2 UAE 현지 플랜트 적용을 위한 에너지 맵핑 로직 개발

가. 실시간 에너지 측정·분석 기술 개발

- (1) SWRO 해수담수화 플랜트는 취수, 전처리, SWRO, BWRO, 후처리 공정으로 구성되며, 에너지 사용량 관리를 위해 기존에는 단위 공정별로 고정된 에너지 사용량 기준값을 설정하여 관리하였으나, 원수수질(TDS, 온도), 생산유량 등이 시간에 따라 변화되기 때문에 이러한 변동요인을 고려하여 에너지 사용량에 대한 표준화가 필요함
- (2) 단위 공정별 에너지 사용량 기준은 계측된 유량, 압력, 펌프, 에너지회수장치의 효율을 적용하여 수식을 통해 계산함

나. 단위공정별 에너지 사용량 기준값 산정

(1) MTBF 공정

 MTBF 공정의 경우 원수수질 변화에 따라 응집제 주입량만 변화되기 때문에 에너지 사용량 변동이 발생하지 않기 때문에 일정한 에너지 사용량 기준값 0.068 kWh/m³을 적용함



ଳ ତ ଲ ୟ ÷ ଅ ∷ W1R S F H IO G S. B P

그림 62. 해수담수화 플랜트 소프트웨어 제작 화면 적용 예시

표 24. 수온, TDS변화에 따른 MTBF 공정 에너지 사용량 기준 값 (SEC : kWh/m³)

수온 원수TDS	14℃	22℃	30°C	36℃	40℃
38000ppm	0.068	0.068	0.068	0.068	0.068
42000ppm	0.068	0.068	0.068	0.068	0.068
46000ppm	0.068	0.068	0.068	0.068	0.068

#### (2) DAF 공정

- 먼저 DAF 순환펌프에 설치된 전력량계의 측정값을 통해 순환펌프의 효율을 계산

η P,t = Qr,t * Pf,t / DAF_EP,t * 1.157*10-1 [%] 여기서 η P,t = DAF 여과펌프 효율 (계산값) [%] Qr,t = DAF recirculation flow rate (측정값) [m³/day] Pf,t = DAF recirculation pressure [bar] DAF EP,t = DAF recirculation pump energy consumption at time t (측정값) [kW]

- 다음으로 DAF공정에 공기 주입을 위한 콤프레셔의 에너지 사용량을 계산

DAF_EC,t = E_com * Qair,r,t /Qair,com,day
여기서
DAF_EC,t = 콤프래셔 에너지 사용량 (계산값)
E_com *= 콤프래셔 전격소비전력 (상수값)
Qair,r,t = 콤프레셔 소비 공기 유량 (측정값)
Qair,com,day = 콤프레셔 1일 공기생산 유량 (측정값)

 다음으로 순환펌프와 콤프레셔를 제외한 에너지사용량, FICI3 pump, FICI3 tank Agitator, Scrapper, Sludge pump은 전격전압을 그대로 사용 (E_FICI3_pump, E_FICI3_tank_Agitator, E_Scrapper, Sludge_pump)

- 마지막으로 DAF 단위공정의 에너지 사용량 기준값 계산

DAF_SEC,n = (DAF_EP,t + DAF_EC,t + E_FlCl₃_pump + E_FlCl₃_tank_Agitator + E_Scrapper + Sludge_pump ) /Qp,r(SWRO)

#### 표 25. 수온, 유입탁도 변화에 따른 DAF 공정 에너지 사용량 기준 값 (SEC : kWh/m³)

항목	Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ትቶ	T(°C)	14	22	30	36	40	14	22	30	36	40	14	22	30	36	40
유입탁도	NTU	10	10	10	10	10	15	15	15	15	15	20	20	20	20	20
0.01.0.71	Qj (m ³ / d)	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500
11111111	Qi (m ³ / h)	104.17	10417	10417	10417	10417	10417	10417	104.17	10417	10417	10417	104.17	104.17	10417	104.17
SWRO 생산유량	m³/ d	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
표면 부하율	m/h	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
DAF지 유효면적	A(m	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94	6.94
DAF지 높이	H(m	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
유출탁도	NTU	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
응집제 주입률	ppm	6	6	1	9	2	2.5	4	2.5	4	1.5	0.5	10	8.5	4.5	3
Saturator 압력	bar	5	5	6.5	4.5	5.5	6	5.5	6.5	4.5	6	5	4.5	6.5	7.5	4
순환율	%	10	14	18	12	11	16	14	17	8	13	10	13	19	20	6
순환펌프 효율	%	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
순환펌프 에너지 소모	kW	2.07	2.89	4.84	2.23	2.50	3.97	3.18	4.57	1.49	3.22	2.07	2.42	5.10	6.20	0.99
컴프레셔 전격소비 전력	kW	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
컴프레셔 1일공기 생산유량	m³/ min	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
DAF 1일공기 소모유량	m³/ min	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
컴프레셔 에너지 소모	kW	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
Agitator	kW	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Scrapper	kW	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
총 에너지소모	kW	6.21	7.03	8.98	6.37	6.64	8.11	7.32	8.71	5.63	7.36	6.21	6.56	9.24	1034	5.13
Normalized SEC	kwh /m ³	0148	0.168	0215	0152	0159	0.194	0175	0208	0135	0176	0148	0157	0.221	0248	0123

#### (3) UF 공정

- 원수 수온, 생산량에 대한 보정계수를 적용하여 운전압력을 Normalization하 여 에너지 사용량의 기준값 설정
- 먼저 원수 수온 및 생산량에 대한 보정계수를 적용하여 운전압력을 계산한
   다

Pf,n = Pf * (Qp,r/Qp,t) / (1-(25-Tt) * 0.02) 여기서

Pf,n = UF Normalized feed pressure at referenced condition (계산값) [bar]

- Pf = UF referenced feed pressure at each condition (상수값) [bar]
- Qp,r = UF Permeate flow rate at referenced condition (상수값) [m³/day]
- Qp,t = Actual UF permeate flow rate at time t (측정값) [m³/day]

Tt = Feed temperature at time t (측정값) [°C]

 다음으로 UF 원수펌프에 설치된 전력량계의 측정값을 통해 여과펌프의 효 율 계산

η P,t = Qf,t * Pf,t / UF_EP,t * 1.157*10-1 [%] 여기서 η P,t = UF 여과펌프 효율 (계산값) [%] Qf,t = UF Feed flow rate (측정값) [m³/day] Pf,t = UF Feed pressure (측정값) [bar] UF_EP,t = UF feed pump energy consumption at time t (측정값) [kW]

- 다음으로 UF의 Normalized된 에너지 사용량 계산

UF_EP,n = (Qf,r/24) * (Pf,n*105) / 3600 /103 /  $\eta$  Pbw,t) [kW]

- 다음으로 UF의 Normalized된 SEC 계산

UF_SEC,n = UF_EP,n /(Qp,t(SWRO)/24) [kWh/m³] 여기서 UF_SEC,n = UF specific energy at referenced condition [kWh/m³] Qp,t(SWRO) = SWRO permeate flow rate [m³/day]

- 다음으로 UF 단위공정의 실제 에너지 사용량 계산

UF_EP,t = (Qf,t/24) * (Pf*105) / 3600 /103 /  $\eta$  Pbw,t) [kW]

- 마지막으로 조건별 SEC 기준값 계산

UF_SEC,t = UF_EP,t /(Qp,t(SWRO)/24) [kWh/m³]

#### 표 26. 수온 변화에 따른 UF 공정 에너지 사용량 기준값 (SEC : kWh/m³)

항목	Case	1	2	3	4	6	7
수온	T(℃)	14	22	25	30	36	40
유입TDS	ppm	42000	42000	42000	42000	42000	42000
UF 유입압력	bar	-	-	1.38	-	-	-
UF 생산유량	m ³ /d	2500	2500	2500	2500	2500	2500
SWRO생산유량	m³/d	1000	1000	1000	1000	1000	1000
UF 유입유량	m³/d	2500	2500	2500	2500	2500	2500
Normalized 유입압력	bar	1.77	1.47	1.38	1.25	1.13	1.06
UF 펌프 효율	%	0.75	0.75	0.75	0.75	0.75	0.75
Normalized UF 에너지소모	kw	6.83	5.66	5.32	4.84	4.36	4.10
Normalized SEC	kwh/m ³	0.163	0.135	0.127	0.116	0.104	0.098

(4) 카트리지 필터 (CF)

- UF 공정과 동일하게 계산

먼저 원수 수온 및 생산량에 대한 보정계수를 적용하여 운전압력을 계산한
 다.

Pf,n = Pf,t * (Qp,r/Qp,t) * (1-(25-Tt) * 0.02) 여기서 Pf,n = CF Normalized feed pressure at referenced conditio (계산값) [bar]

Pf = CF referenced feed pressure at each condition(상수값) [bar]

- Qp,r = CF Permeate flow rate at referenced condition (상수값 [m³/day]
- Qp,t = Actual CF permeate flow rate at time t (측정값) [m³/day]
- Tt = Feed temperature at time t (측정값) [°C]
  - 다음으로 CF 원수펌프에 설치된 전력량계의 측정값을 통해 여과펌프의 효 율을 계산

η P,t = Qf,t * Pf,t / CF_EP,t * 1.157*10-1 [%] 여기서 η P,t = CF 여과퍼프 효율 (계산값) [%] Qf,t = CF Feed flow rate (측정값) [m³/day] Pf,t = CF Feed pressure (측정값) [bar] CF_EP,t = CF feed pump energy consumption at time t (측정값) [kW]

- 다음으로 CF의 Normalized된 에너지 사용량 계산

CF_EP,n = (Qf,r/24) * (Pf,n*10^5) / 3600 /103 /  $\eta$  Pbw,t) [kW]

- 다음으로 CF의 Normalized된 SEC 계산

CF_SEC,n = CF_EP,n /(Qp,t(SWRO)/24) [kWh/m3] 여기서 CF_SEC,n = CF specific energy at referenced condition [kWh/m³] Qp,t(SWRO) = SWRO permeate flow rate [m³/day]

- 다음으로 CF 단위공정의 실제 에너지 사용량 계산

CF_EP,t = (Qf,t/24) * (Pf*105) / 3600 /103 /  $\eta$  Pbw,t) [kW]

- 마지막으로 조건별 SEC 기준값 계산

CF_SEC,t = CF_EP,t /(Qp,t(SWRO)/24) [kWh/m³]

표 27. 수온 변화에 따른 CF 공정 에너지 사용량 기준값 (SEC : kWh/m³)

항목	Case	1	2	3	4	5	6
수온	T(℃)	14	22	25	30	36	40
유입TDS	ppm	42000	42000	42000	42000	42000	42000
C/F 막간차압	bar			1.1			
C/F 생산유량	m³/d	2500	2500	2500	2500	2500	2500
SWRO생산유량	m³/d	1000	1000	1000	1000	1000	1000
UF 생산유량	m³/d	2500	2500	2500	2500	2500	2500
Normalized 유입압력	bar	1.41	1.17	1.1	1.0	0.90	0.84
C/F 펌프 (RO feed) 효율	%	0.75	0.75	0.75	0.75	0.75	0.75
Normalized C/F 에너지소모	kw	5.44	4.51	4.24	3.86	3.48	3.26
Normalized SEC	kwh/m ³	0.130	0.108	0.101	0.092	0.083	0.078

(5) SWRO 공정

- SWRO 최적화 모델을 통해 도출된 수온, TDS별 에너지 사용량 기준값을 적용

표 28. 수온, TDS 변화에 따른 SWRO 공정 에너지사용량 기준값 계산결과 (SEC : kWh/m³)

수온 원수TDS	14℃	22°C	30℃	36℃	40℃
38000ppm	2.207	2.074	1.992	1.953	1.934
42000ppm	2.411	2.273	2.186	2.147	2.127
46000ppm	2.611	2.468	2.379	2.337	2.316

다. 에너지 사용량 모니터링

- (1) 전력량계는 단위공정의 부하별, 단위공정별, 전체플랜트의 에너지 사용량 측정
   을 위해 설치 예정임
- (2) 단위공정(MTBF, UF, RO, BWRO)의 부하(펌프, 블로워)별로 설치될 전력량계와 단위공정별, 전체 플랜트의 에너지 사용량 측정을 위한 전력량계를 통해 에너 지 사용량을 측정할 예정임
- (3) 실시간 에너지 사용량 모니터링을 위해 기본 측정 주기를 10분으로 설정하고, 전력량의 단위는 kWh를 적용할 계획임

(4) 단위공정별 전력사용량 측정위치와 항목(전력량계 총 13개 설치)은 아래와 같 음. 여기서 DAF는 contingency plan으로 MTBF가 에너지 사용량 목표 값을 지 속적으로 초과하거나 수질 목표값을 지속적으로 초과할 경우 대체하여 도입 되는 공정으로 정상 운전 시에는 MTBF의 에너지 사용량을 측정하지만 contingency plan으로 운영시에는 DAF의 에너지 사용량을 측정하고 모니터링 할 계획임

- MTBF : 전체 (1대)
- DAF : 리사이클펌프, 전체 (2대)
- UF : UF Feed 펌프, UF 역세 펌프, 전체 (3대)
- RO : RO Feed 펌프, RO고압 펌프, 부스터 펌프, 전체 (4대)
- BWRO : BWRO 고압펌프, 전체 (2대)
- (5) 에너지 사용량 실시간 모니터링을 위해 단위 공정의 부하별 측정된 에너지 사용량 및 전체 플랜트의 에너지 사용량 측정값은 사용자가 설정한 시간 단위로 운영프로그램의 화면으로 출력하며 에너지 사용량 출력시 단위는 kWh와 kWh/m3 2가지 단위로 각각 출력함. kWh/m3 단위로 에너지 사용량을 출력시에는 RO공정의 생산수량을 기준으로 계산함. 그리고 출력 값이 기준 값의 몇%에 해당하는지 계산하여 막대그래프 형태로 표현함

(6) 에너지 사용량은 순시 값 뿐 아니라 누적 값을 나타내야함

- (7) 누적 값은 선형 그래프로 표현해야 함. 누적 값은 순시 값과 마찬가지로 단위 공정별로 에너지 사용량을 표현해야 하며, 운전자가 그래프에 표현되는 데이 터의 범위와 간격을 조정할 수 있어야 함
- (8) 10분 단위로 측정된 에너지 사용량은 엑셀 형태로 저장되어 사용자가 추후에 다운로드 받을 수 있어야 함

#### 표 29. 전력량계 필요수량 및 설치 위치

공	정	전력사용원	전력량계 수량	합계 (부하설비용/단위공정Total용)
		Blower for reactor	-	
		Blower for B/W	-	
МЛ	ΒF	FlCl3 pump	-	0/1
	FlCl3 tank Agitator		-	0/1
		MTBF 전체	1	
		FlCl3 pump	-	
		FlCl3 tank Agitator	-	
D	٩F	Scrapper	-	1/1
		Recycle pump	1	1/1
		Sludge pump	-	
		Compressor	-	
		DAF 전체	1	
		Feed pump	1	
1	D	Backwash pump	1	2/1
	Г	Compressor	-	2/1
		UF 전체	1	
	CF	Feed pump	1	0/1
		HP pump	1	
		Circulation pump	1	
		SBS pump	-	
SWRO		SBS tank Agitator	-	
0 110	SWRO	Antiscalant pump	-	2/1
		Antiscalant tank Agitator	-	
		Flushing pump	-	
		SWRO 전체	1	
		Highpressure pump	1	
DW	ΠO	Caustic pump	-	1/1
DW	NU	Caustic tank Agitator	-	1/1
		BWRO 전체	1	
Total p	lant		1	1
합	계		13	6/7 (13)



그림 64. 에너지 사용량 순시값 측정 화면



그림 65. 에너지 사용량 누적값 측정 화면

#### 라. 에너지 사용량 분석

- (1) 에너지 사용량 분석은 단위공정별로 수행하며 단위 공정별로 측정된 유량, 압 력 및 에너지 사용량 값을 사용하여 에너지 사용량을 처리 에너지, 이송 에너 지, 물리적 손실, 전기적 손실 등으로 상세하게 분석함.
- (2) 에너지 사용량 분석에 관련된 수식은 단위공정별로 작성되었으며 아래와 같음
- (3) 단위공정의 에너지 사용 용도별 분석 결과는 다음과 같이 Sankey 그래프로 표현함
- (4) 에너지 맵핑은 사용자가 설정한 시간을 기준으로 에너지 분석 수식에 의해 도 출된 결과로 작성함.

(5) Sankey 그래프 작성을 위한 항목은 다음과 같음

#### 표 30. 단위공정별 에너지 사용량 용도

Intake Total_E_in : Total energy consumption P_loss_in : Physical loss E_Trans_in : Transport energy	CF Total_E_cf : Total energy consumption P_loss_cf :Physical loss E_Treat_cf : Treatment energy
MTBF Total_E_mt: Total energy consumption P_loss_mt : Physical loss E_Treat_mt : Treatment energy	SWRO Total_E_ro : Total energy consumption P_loss_ro : Physical loss E_Treat_ro : Treatment energy E_Trans_ro : Transport energy
DAF Total_E_daf : Total energy consumption P_loss_daf : Physical loss E_Treat_daf : Treatment energy	BWRO Total_E_br : Total energy consumption P_loss_br : Physical loss E_Treat_br : Treatment energy E_Trans_br : Transport energy
UF Total_E_uf : Total energy consumption P_loss_uf : Physical loss E_Treat_uf : Treatment energy E_Trans_uf : Transport energy	

2.3 고압펌프 이상진단 및 해수담수플랜트 자산관리 로직 구축(위탁연구, 광주과학기술원)

### 2.3.1 국내 T/B 운전 DB를 활용하여 정유량 방식 RO공정 모델 파라 미터 최적화

가. 국내 T/B 운전 DB를 활용하여 정유량 방식 역삼투 공정 모델 파라미터 최적화

- (1) 기존 연구를 통해 정유량 방식 RO 공정 모델이 개발되었으며, 당해연도에는 역삼투 공정 분리막 세정 및 교체에 따른 성능 변화와 운영관리비를 산정하는 연구를 진행함
- (2) 분리막 세정 및 교체에 따른 성능 변화란 역삼투 공정에서 막 저항에 대한 식을 이용하여 분리막에 축적되는 막오염을 모사하여, 분리막 세정 및 교체가 진행되었을 때 에너지 소모량과 생산수질의 변화를 모사하는 것을 의미함
- (3) 운영관리비 산정을 위해서는 1) 역삼투 공정의 유입수 TDS 조건, 설계 조건 및 운전 조건을 입력하고, 분리막의 세정 및 교체에 대한 기준을 설정함. 2) 이를 이용하여 분리막 세정 및 교체 시 필요한 세정 약품 비용, 분리막 교체 비용 그리고 에너지 소모량에 따른 전력비를 합산하여 운영관리비를 산정함
  (4) 설계 조건은 압력 베셀 개수, 펌프 종류, Energy recovery device(ERD) 종류 및 Constant speed drive(CSD), Variable frequency drive(VFD) 장착 여부 등이





그림 66. 정유량 방식 역삼투 공정의 시스템 구성도

- (5) 분리막의 세정 기준은 1) 에너지 소모량 또는 생산수 TDS 농도, 2) 보정압력 강하(normalized pressure drop, NPD), 보정염투과율(normalized salt passage, NSP), 보정생산유량(Normalized permeate flow, NPF) 변화, 3) 세정을 진행할 주기 등으로 설정할 수 있음
- (6) 분리막 세정과 교체를 진행하는 알고리즘은 그림 21와 같음. 유입수 수질 및 운전 조건을 사용자로부터 입력 받고 이에 대한 공정 모사가 진행됨. 설정된 전산 모사 기간 중 세정 기준에 도달하여 진행되는 세정 횟수 (N), 분리막 교 체 횟수 (M)에 따라서 관리자가 선정한 기간 내에 최소한의 운영관리비를 가 지는 경우에 대한 결과값을 도출함. 이때 운영관리비(z(N, M))은 전력비 (electricity cost, EC), 세정 약품비 (cleaning cost, CC) 그리고 분리막 교체비 (replacement cost, RC)의 합으로 구성됨



그림 67. 정유량 방식 역삼투 공정의 분리막 세정 및 교체 시점 결정 알고리즘(a)

(7) 운영관리비 산정에 사용되는 식은 다음과 같음. 전기비용의 경우 생산수량과 에너지소모량의 곱에 대한 적분으로 계산되며, 세정 약품 비용은 세정 약품의 종류에 따른 비용을 전부 합산한 것을 사용함

(8) 분리막 세정과 교체를 모사하기 위해서 사용되는 알고리즘은 그림 68과 같음. 알고리즘의 구성은 1) 정유량 방식의 역삼투 공정을 모사하는 부분, 2) 막 오 염의 증가를 모사하는 부분, 그리고 3) 분리막 세정과 교체를 모사하는 부분 으로 되어 있음. 역삼투 공정에 사용된 식은 참고문헌(K. L.Chen, Journal of Membrane Science (2004))의 식을 사용함



그림 68. 정유량 방식 역삼투 공정의 분리막 세정 및 교체 시점 결정 알고리즘(b)

(9) 세정에 사용되는 화학 약품에 대한 정보는 표 31, 32, 33에 제시된 것과 같음. 본 연구에서는 표 31~33의 정보를 기반으로 세정에 대한 세정 약품 및 물질을 결정하였으며, excel 파일 형태로 작성되어 알고리즘에서 호출하여 사용할 수 있도록 개발됨  ⅔ 31. Hydranautics Recommended Chemical Cleaning Solutions (Hydranautics, Technical Service Bulletin, 2011)

Foulant	Gentle Cleaning Solution	Harsher Cleaning Solution
Calcium carbonate scale	1	4
Calcium, barium or strontium sulfate scale	2	4
Metal oxides/hydroxides (Fe, Mn, Zn, Cu, Al)	1	5
Inorganic colloidal foulants	1	4
Mixed Inorganic/organic colloidal foulants	2	6
Polymerized silica coating	None	7
Biological matter	2 or 3	6
NOM organic matter (naturally occurring)	2 or 3	6

Cleaning Solution	Bulk Ingredients		Quantity	
1	Citric acid	as 100% powder	7.7 kg (2.0 wt.%)	
	STPP (sodiumtripolyphospate)	as 100% powder	7.7 kg (2.0 wt.%)	
2	Na-EDTA	as 100% powder	3.18 kg (0.8 wt.%)	
	STPP (sodiumtripolyphospate)	as 100% powder	7.7 kg (2.0 wt.%)	
3	Na-DDBS (Na-dodecylbenzene		0.1 kg (0.025wt %)	
	sulfonate)		0.1 Kg (0.025 wt.70)	
4	HCl acid (hydrochloric acid)	as 36% HCl	1.78 liters (0.5	
5	Sodium hydrosulfite	as 100% power	3.86 kg (1.0 wt.%)	
	NeOU (andium hydrovido)	as 100% powder	0.38 kg (0.1 wt.%)	
6	NaOH (soululli liyuroxide)	as 50% liquid	0.49 liters	
	SDS (sodium dodecylsulfate)		0.11 kg (0.03	
	3D3 (sourain dodecyrsuirate)		wt.%)	
7	NoOH (sodium hydrovide)	as 100% powder	0.38 kg (0.1 wt.%)	
(	Rachi (Socialii Ilydroxide)	as 50% liquid	0.49 liter	

丞 33. Cleaning Solution Volume Requirement per RO Element (Hydranautics, Technical Service Bulletin, 2011)

Flement Size	Normal Fouling	Heavy Fouling	
Element Size	(Liters)	(Liters)	
4 X 40 inches	9.5	19	
6 X 40 inches	19	38	
8 X 40 inches	34	68	
8.5 X 40 inches	38	76	
16 X 40 inches	136	272	

(10) 표 34~36은 시뮬레이션에서 사용된 조건들을 포함함. 표 34는 전산 모사 시 나리오의 유입수 온도 및 농도 조건을 보여줌. 표 35는 전산 모사 시나리오의 유입수 온도 및 농도 조건에 대한 값들을 포함하고 있으며, 정유량 방식에 맞 춰서 생산수량은 10,000 m³/day으로 설정됨. 표 36는 분리막 세정 조건에 대한 것으로 일반적인 역삼투 공정에서 사용하는 세정 기준이 사용됨

표 34. 전산 모사 시나리오의 유입수 온도 및 농도 조건

	Temp. [°C]	Conc. [ppm]	Pres. [bar]
CASE 1	4	28,000	55~70
CASE 2	30	28,000	41~50
CASE 3	4	32,000	59~74
CASE 4	30	32,000	45~54

표 35. 전산 모사 시나리오 Parameter

Parameter	Value	
Temperature [°C]	4 & 30	
Feed Flow Rate [m ³ /day]	25,000	1,042 [m³/hr]
Permeate Flow Rate [m ³ /day]	10,000	416 [m³/hr]
Feed Concentration [ppm]	28,000 & 32,000	
Pressure Vessel [ea]	91	
ERD [ea]	10	

표 36. 분리막 세정 조건

Target Value	Value
Normalized Pressure Drop (NPD)	10 [%] 증가
Normalized Pressure Drop	2 [bar] 이상
Normalized Permeate Flow (NPF)	10 [%] 감소
Normalized Salt Passage (NSF)	10 [%] 증가

(11) 그림 69는 유입수 온도가 4, 30℃ 이고 유입수 농도가 28000, 32000 ppm인 경우에 대한 모사 결과를 표현함. 시뮬레이션 기간은 3년이며, 운전기간 동 안 분리막 성능 변화에 따라 세정 및 막 교체를 진행할 때 공정 성능의 변 화를 예측함. 세정의 조건은 압력강하(Differential pressure, DP), 보정생산 유량(Normalized permeate flow, NPF), 보정염투과율(normalized salt passage, NSP)에 따라 결정되며, 5회 세정 후 분리막이 교체되도록 설정함



그림 69. (A) 압력 강하 (Differential Pressure, DP) [bar]; (B) 에너지 소모량 (Specific Energy Consumption, SEC) [kWh/m³]; (C) 생산수 수량 (Normalized Permeate Flow, NPF) [m³/hr]; (D) 염투과도 [%] (Normalized Salt Passage, NSP)

(12) 그림 70. 은 각각의 경우에서 펌프별 에너지 소모량을 의미함. 고압펌프(HP)

의 경우 동일한 압력으로 작동하기 때문에 소모되는 에너지량이 모든 경우에 서 같은 것을 볼 수 있음. 부스터 펌프 (BP(HP))의 경우 유입수 수질 조건에 영향에 따라 에너지 소모량이 변하며, 4℃ 이고 유입수의 농도가 32000 ppm 조건에서 가장 많은 에너지를 소모함



그림 70. RO 공정내에서 각 펌프별 에너지 소모량; BP (ERD) - ERD 후단의 Booster Pump, BP (HP) - 고압 펌프 (High Pressure Pump, HP) 전단의 Booster Pump, HP - 고압 펌프 (High Pressure Pump, HP)

(13) 그림 71. 은 분리막 교체 시점을 세정이 2~10번 진행된 후로 설정 하였을 때 공정 성능 변화 및 운영관리비의 변화를 예측한 결과를 나타냄. 분리막 교체 시점이 늦어짐에 따라 운영비 지속적으로 증가하는 경향을 보이며, 이는 막 오염 증가로 인해 세정 빈도수가 급격하게 증가했기 때문임



그림 71. 분리막 교체 시점에 따른 역삼투 공정의 운영비 비교

표 37. 분리막 교체 시점에 따른 역삼투 공정의 세정 횟수, 교체 횟수 그리고 운영비 비교

세정 횟수 (막 교체 시점)	전체 세정 횟수	막 교체 횟수	운영비
2	5	2	445
3	6	1	445
4	6	1	445
5	7	1	480
6	7	1	480
7	7	1	481
8	8	1	515
9	9	1	550
10	10	0	549

*분리막 가격 : 600,000 KRW/ea, 전기료 : 100 KRW/kWh, 세정 용액 : 1, 2, 3

(14) 모델에 사용되는 A, B 파라미터의 계산을 위해서 유입수 온도 및 농도 영향에 따른 모델 적용식 검증을 진행함. LG에서 제공되는 막이기 때문에 LG Q+ (projection program) 시뮬레이션 결과, 선형 모델 계산 결과, 온도 보정 인자 (temperature correction factor, TCF)를 통해서 계산한 결과를 비교함. 시뮬레이 션은 다음 두 가지 조건으로 진행됨 : 1) 수투과도 (water permeability, A)는 1 [ppm] 조건, 엽투과도(salt permeability, B)는 2,000 [ppm] 조건, 2) 32,000 [ppm] 조건

	Temp. [°C]	10	15	20	25	30	35	R ²
TRUE	A [LMH/bar]	1.1867	1.4213	1.7076	2.0425	2.3833	2.7951	
LINEAR	A [LMH/bar]	1.1187	1.4407	1.7627	2.0847	2.4067	2.7287	
	Error [%]	5.7302	1.3649	3.2268	2.0661	0.9818	2.3756	0.9919
TCF	A [LMH/bar]	1.1986	1.4405	1.7204	2.0425	2.4112	2.8312	
	Error [%]	1.0006	1.3498	0.7494	0.0000	1.1715	1.2920	0.9985
TESTBED	A [LMH/bar]	-	0.62	0.67	0.63	0.72	0.80	

표 38. Water permeability (A), 1 [ppm] 조건

표 39. Salt permeability (B), 2,000 [ppm] 조건

	Temp. [°C]	10	15	20	25	30	35	R ²
TRUE	B [LMH]	0.0137	0.0184	0.0246	0.0325	0.0426	0.0555	
LINEAR	B [LMH]	0.0110	0.0195	0.0280	0.0365	0.0450	0.0535	
	Error [%]	19.7080	5.9783	13.8211	12.3077	5.6338	3.6036	0.9629
TCF	B [LMH]	0.0146	0.0192	0.0251	0.0325	0.0417	0.0530	
	Error [%]	6.6393	4.6130	2.1288	0.0000	2.1444	4.4334	0.9917
TESTBED	B [LMH]	-	0.025	0.055	0.05	0.068	0.025	

¹⁾TRUE : LG Q+ 프로그램을 이용하여 계산한 값 ²⁾LINEAR : 엑셀의 선형 수식으로 맞춘 경우 ³⁾TCF : 정유량 모델에 적용된 수식 ⁴⁾TESTBED : 테스트베드 데이터를 이용하여 계산한 결과

끂	40	Water	permeability	(A)	32,000	[mm]	주거
ᅭ	40.	water	permeability	(A),	32,000	rhhun	22

	Temp. [ºC]	10	15	20	25	30	35	R ²
TRUE	A [LMH/bar]	0.8981	1.0673	1.2725	1.5008	1.7513	2.0453	
LINEAR	A [LMH/bar]	0.8499	1.0789	1.3079	1.5369	1.7659	1.9949	
	Error [%]	5.3669	1.0869	2.7819	2.4054	0.8337	2.4642	0.9916
TCF	A [LMH/bar]	0.8807	1.0584	1.2641	1.5008	1.7717	2.0803	
	Error [%]	1.9379	0.8294	0.6583	0.0000	1.1666	1.7130	0.9979
TESTBED	A [LMH/bar]	-	0.62	0.67	0.63	0.72	0.80	

표 41. Salt permeability (B), 32,000 [ppm] 조건

	Temp. [℃]	10	15	20	25	30	35	R ²
TRUE	B [LMH]	0.0137	0.0184	0.0246	0.0325	0.0426	0.0555	
LINEAR	B [LMH]	0.0110	0.0195	0.0280	0.0365	0.0450	0.0535	
	Error [%]	19.7080	5.9783	13.8211	12.3077	5.6338	3.6036	0.9629
TCF	B [LMH]	0.0146	0.0192	0.0251	0.0325	0.0417	0.0530	
	Error [%]	6.6393	4.6130	2.1288	0.0000	2.1444	4.4334	0.9917
TESTBED	B [LMH]	-	0.025	0.055	0.05	0.068	0.025	

¹⁾TRUE : LG Q+ 프로그램을 이용하여 계산한 값

²⁾LINEAR : 엑셀의 선형 수식으로 맞춘 경우

³⁾TCF : 정유량 모델에 적용된 수식

⁴TESTBED : 테스트베드 데이터를 이용하여 계산한 결과

- (15) LG membrane에서 제공되는 분리막을 사용하기 때문에 LG Q+ 프로그램을 이용 해서 계산되는 A, B 값을 실제 분리막이 가지는 값이라고 가정하고 계간 값 비 교를 진행. 온도가 각 파라미터에 미치는 영향을 비교할 때, 온도에 선형 관계 (LINEAR) 혹은 TCF 식의 관계을 사용할 경우 정확도(R²)는 0.95 이상을 가짐 (A - R² : 0.99, B - R² : 0.97 수준). 두 경우에서 TCF 식은 각각의 온도에서의 오차 가 선형 관계보다 적으며, 5% 수준의 오차를 가짐. 연구 개발을 통해서 개발된 정유량 방식 모델에는 TCF 식이 A, B 값의 보정을 위해서 사용되었으며, 25 [°C] 조건에서의 A, B 값만 결정되면 계산식의 추가적인 보정 없이 사용 가능
- (16) 농도가 각 파라미터에 미치는 영향을 비교하였을 경우, 계산 방법에 따라서 A 값은 0.3~0.7, B 값은 0.002~0.008 정도의 차이를 보임. 어떤 농도에서 계산된 A, B 값을 사용할 것인지는 test-bed 데이터와의 정유량 모델의 비교를 통해서 결정 할 필요가 있음
- (17) 대산 test-bed 데이터를 이용하여 정유량 모델의 검증을 진행함. 시뮬레이션 조 건의 입력값은 유입수 TDS 농도, 유입수 온도, 유입수 유량 그리고 회수율이며, 출력값은 운전압력, 생산수 유량, 생산수 TDS 농도, 차압을 사용함. 검증 과정에

서의 변경한 값은 water permeability (A) 값임



그림 72. 대산 testbed 데이터 (A) 유입수 온도 (Tf); (B) 유입수 수량 (Qf); (C) 회수율 (Rec); (D) 유입수 수질 (Cf)

(18) 그림 72.는 대산 test-bed 데이터이며, 운전기간은 5월부터 11월 말까지임. 플랜 트가 가동될 때 유입수의 온도는 10~35 [℃]의 사이 값으로 계절 변화에 따른 온 도 변화를 반영한 것이며, 유입수는 28,000 [ppm] 수준으로 유지되었음. 회수율은 유입수 유량에 상관 없이 40 [%] 수준을 맞출 수 있는 조건에서 플랜트가 운전 됨



그림 73. 대산 testbed 데이터를 이용한 모델 검증 결과 (A) 운전 압력 (Pf); (B) 생산수 수질 (Cp); (C) 생산수 유량 (Qp); (D) 차압 (DP)

(19) 그림 73.은 테스트 베드의 운전 결과, 정유량 모델을 이용하여 계산된 결과 그리 고 LG Q+ 프로그램을 이용하여 계산한 결과를 비교하는 그림임. 운전 압력 예측
의 측면에서는 A가 1 [LMH/bar]인 경우, 생산수 농도 예측에서는 A가 2
[LMH/bar]인 경우가 더 높은 정확도를 보였음. 현재 모델에 적용된 값인 1.5
[LMH/bar]를 사용할 경우 예측에 대해서는 값의 차이를 보이지만 데이터의 경향 성을 잘 따라가는 특성을 보임. Cp의 경우 LG Q+의 결과가 테스트베드의 결과
와 제일 유사한 값을 가짐. 현재 적용된 A 값 및 모델의 경우 일반화된 이론식
의 사용한 경우에 해당됨. 테스트 베드 데이터와 일치하는 모델의 개발이 필요할 경우 모델의 계산식 일부를 실험식으로 대체할 필요가 있음

#### 2.3.2 칼만필터-머신러닝 기반의 고압 펌프 이상 진단 알고리즘 개발

- (1) 펌프와 같은 회전 설비는 운전 중 진동을 발생시키며, 이때 진동이 변하는 원인은 운전, 측정 조건의 변화가 있음. 펌프에 기계적 혹은 수력학적 결함/고장이 생길 경우 진동 패턴의 변화가 발생함. 이를 분석하기 위하여 펌프에 진동계를 설치하 고 펌프의 이상 진단을 진행함
- (2) 진동계를 이용한 진동 측정 항목은 주로 변위, 속도 그리고 가속도이지만, 본 연 구에서는 가속도에 대한 부분만을 측정함. 측정된 정보에 대해서 그래프 통한 진 동의 분석과 진동 측정 프로그램에 포함된 진동 분석 기능인 진동 파형 관찰, 주 파수 분석 그리고 위상 분석에 대한 것을 실시간으로 모니터링 하여 이상 진단에 대한 연구를 진행함



그림 74. 펌프의 진동계 설치 위치(a)

- (3) 진동이 측정되는 위치는 구동체(모터)의 회전 변화를 정확하게 모니터링 가능한 곳으로, 위의 그림과 같이 4개의 지점(모터부 2개, 펌프부 2개)가 될 수 있음. 각 위치에서는 X, Y, Z축 변화에 대한 것을 측정 가능하며, 주로 X, Y축 진동에 대한 것을 모니터링 함
- (4) 진동 분석 프로그램으로부터 제공되는 정보는 변위, 속도 그리고 가속도임. 총 3 개의 정보를 측정하는 이유는 각 정보가 포함하고 있는 주파수 정보의 범위가 다 르기 때문이며 주파수 범위는 저주파 영역 및 고주파 영역으로 구분됨. 각 주파수 영역으로부터 유추할 수 있는 고장/결함의 원인은 다르며 각 파라미터로부터 확 인 가능한 주파수 영역은 표 42와 같음. 예) 가속도, 고주파 영역 - 베어링 및 기 어의 이상, 변위, 저주파 영역 - 축 정렬 이상

표 42. 진동의 정보에 따른 주파수 범위

	변위	속도	가속도
주파수 범위	0.1 ~ 500Hz	10 ~ 1000Hz	1000Hz 이상
저주파 영역	확인	분명	확인 곤란
고주파 영역	확인 불가	존재 확인	분명

(5) 펌프의 이상진단 순서는 그림 75. 와 같음. 1) 진동크기 계측 : 펌프에 설치된 6개 의 센서로 부터 변위, 속도 그리고 가속도에 대한 정보를 수집 및 저장 2) 진동파 형의 관찰 : 수집된 정보에 대해서 스펙트럼 분석이 진행. 이를 통한 결과로 시간 (time)에 따른 진폭(amplitude) 그래프를 생성. 2) 주파수 분석 : 2) 진동파형의 관 찰로부터 생성된 그래프를 FFT (Fast Fourier Transform)를 진행. 결과로는 진동 수(frequency)에 따른 진폭(amplitude) 그래프가 생성되며 이를 이용하여 피크 포 인트 분석이 가능. 4) 위상 분석 : 상대 위상 분석이 진행되며, 상대 위상 분석은 센서로 부터 수집된 2지점 사이의 위상을 비교하고 차이를 분석. 5) 1) ~ 4)의 과 정을 통해서 진행된 분석을 바탕으로 펌프의 이상 여부 및 이상 위치를 판단하고 결함/고장 문제를 해결



그림 75. 펌프의 이상 진단 순서도

- (6) 수집된 진동 정보로부터 이상 진단 시 기준이 되는 것은 2가지임. 기준 D은 ISO 10816이며, 기준 D는 펌프의 운전을 통해서 수집된 운전 데이터베이스 기준임
- (7) ISO 10816의 기준은 회전기기의 운전 시 발생하는 진동에 따라서 운전의 단계를
   4 단계로 나눈 것임. 4개의 단계는 Good, Satisfactory, Unsatisfactory (alert) 그리
   고 Unacceptable (danger)로 구성되며, 이에 대한 기준은 표 43에 제시되어 있음

步 43. ISO 10816 .	기순
-------------------	----

Velocity	Velocity Range Limits and Machine Classes					
Severity		-				
	b)Cmo11	⁽⁾ Madium	Large M	lachines		
	Siliali	Wiedrum	()Disid Comments	^{e)} Less Rigid		
mm/s, ^{a/} RMS	Machines Class	Machines Class	"Rigid Supports	Supports Class		
	Ι	Π	Class III	IV		
0.29				1 V		
0.28	Cood					
0.71	Guu	Good	Good	Good		
1 12			0000			
1.12	Satisfactory					
2.80	Unsatisfactory	Satisfactory		-		
4.50	Chisatisractory	Unsatisfactory	Satisfactory			
4.50	(alert)	Ulisatisi actor y		Satisfactory		
7.10		(alert)	Unsatisfactory			
11.20	Luccontable		(alert)	Unsatisfactory		
18.0	Unacceptable	Unacceptable		(alert)		
28.0	(danger)	(danger)	Unacceptable	Unacceptable		
45.0			(danger)	(danger)		

a) RMS : Root Mean Square

b) Class I : 20 hp 이하

c) Class II : 20 ~ 100 hp (less rigid supports), 100 ~ 400 hp (rigid supports)

- d) Class III : 400 hp 이상 (rigid supports)
- e) Class IV : 100 hp 이상 (rigid supports)
- (8) 펌프의 운전을 통해서 수집된 운전 데이터베이스는 펌프의 수력학적 문제를 측정 하기 위한 데이터임. 이상을 확인할 수 있는 기준이 제시되어 있다고 하더라도 각 펌프 및 설치된 공정의 특성에 따라서 이상점이 다르기 때문에 이를 반영하기 위 한 실험 혹은 운영데이터의 수집이 필요함. 이를 기반으로 하여 설치된 공정에 맞 는 이상 진단이 가능함.



그림 76. 펌프의 진동계 설치 위치(b)

### 2.3.3 해수담수플랜트 자산관리 로직 구축

- (1) 정수 처리 시설과 같은 상수도 시설에 대해서는 자산관리 분야에 대한 연구가 지 속적으로 진행되어 왔으며, 이에 대한 틀이 체계적으로 구축되어 있음. 반면, 해수 담수화 시설의 경우 정수처리 시설에 비해서 장비의 마모와 부식이 심하기 때문 에 해수담수화 시설만의 자산관리 로직이 필요하지만 이에 대한 연구가 진행되지 않은 상황임.
- (2) 자산관리 로직 구축은 설계 단계에서의 자산관리와 운영관리 단계에서로 구분하여 진행됨. 당해연도 연구에서는 설계 단계에서의 자산관리 구축이 진행됨. 자산관리 대상은 완제품으로 구매되는 설비에 대한 것을 기준으로 하며, 각 제품의 구매 시 제조사로부터 제공되는 사양서의 내용을 바탕으로 하여 자산관리 로직을 구축함. 내구연한 등에 대한 부분은 정상작동을 가정하여 시양서, 제공회사 혹은 법정 내구연한을 준수한다는 가정하에서 자산관리 시스템을 구축함. 추후 연구가 진행될 경우 해수담수화 시설인 점을 감안하여 기존에 설정된 내구연안 대비 실제 사용가능한 성능, 수명 등에 대한 내용을 수정함.

표 44. 수력학적 원인으로 인한 펌프의 진동

진동의 원인	진동수	진동의 특징 및 현상
<ol> <li>공동현상(cavitation)</li> <li>NPSH 혹은 흡입 수위 과소</li> <li>회전 속도 과대</li> <li>펌프 흡입구의 편류</li> <li>(4) 토출 유량 과다</li> <li>(5) 흡입 스트레나의 막힘</li> </ol>	- 진동수가 회전 사이클과는 무관 - 일반적으로 높은 사이클, 600~25000 Hz	-공동현상 특유의 소음을 발생 -주로 토출량이 많을 때에 발생
2. 서어징(Surging)	- 통산 진동수는 1/10~10 Hz	- 펌프 양정 곡선이 우상의 기울기 - 배관 중에 공기조 혹은 공기가 모이는 부분이 있을 경우
3. 수충격	- 통산 진동수는 1/10~10 Hz	- 펌프가 정전으로 정지한 경우
4. 펌프내의 맥동류	- 진동수는 회전 사이클과 무관	_

- (9) 펌프 진동의 원인은 다음과 같으며 펌프의 운전 데이터베이스를 이용한 이상 진단 기술을 통해서 각 경우를 분류하여 관리자에게 알려줄 수 있음.
  - 설비의 불완전 : 설계 (Design), 조립 (Assembly), 제조 (Manufacture), 작동 (Operation), 설치 (Installation), 유지보수 (Maintenance)
  - 일시적 결함 : 축정렬 불량 (Misalignment), 질량 불평형 (Unbalance), 벨트 및 풀리의 마모 (Worn Belt & Pulley), 베어링 결함 (Bearing Defects), 유압력 (Hydraulic Forces), 축 휨(Bent Shafts), 기어 결함 (Gear Problems), 하우징 번형 (Housing Distortion)
  - 진동을 증폭시키는 일반적인 결함 : 공진 (Resonance), 헐거움 (Looseness)
- (10) 본 연구에서는 파일럿 플랜트에서 사용하는 펌프에 진동계를 설치하였으며, 2개 의 위치에 4개의 진동계를 설치함(motor x, y 및 pump x, y). 현재는 플랜트의 정상 운전에 대한 데이터만이 수집된 상태이며, 남은 연구기간 동안 추가 실험 및 연구가 필요한 상황임.

(3) 자산관리는 Level 1부터 Level 7까지 분류하였으며, 이에 대한 부분은 표 45와 같음. Level 1은 자산의 가장 포괄적인 분류로 취수시설 혹은 해수담수화시설로 구분되는 시설 중 어디에 속하는 지를 의미함. Level 2는 해당 시설의 어떤 단위공 정에 포함되는 지를 분류함. 해수담수화 시설의 경우 DAF 공정, MIBF 공정, 그리고 RO 공정 등으로 분류됨. Level 3는 토지, 건물, 구축물, 기계설비 그리고 전기 설비에 대한 분류임. Level 4는 기계 설비 및 전기 설비에 대한 세부 분류로 펌프, 벨브 그리고 계측장비들과 같이 완제품으로 구입되는 하나의 단위 장치에 대한 구분임. Level 5는 해당 자산의 세부적으로 어떤 자산인지를 분류함. 예를들어 펌프의 경우 취수펌프, 순환펌프 그리고 고압펌프와 같이 사용되는 용도에 따라서 명칭이 부여됨. Level 6은 Level 5에서 분류한 자산들에 부여되는 번호로 동일 자산이 존재할 경우 각 자산을 구분하기 위한 항목임. Level 7은 각 완제품에 포함되는 부속품 및 소모품에 대한 분류로 완제품으로 구입되는 자산 중 운영 하면서 교체가 필요한 부품들에 대한 내용을 포함함.

#### 표 45. 자산관리 로직의 자산별 분류

Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7
취수시설	취수펌프실	(1) 토지				
		(2) 건물				
		(3) 구축물				
해수담수 시설	DAF	(4) 기계설비	펌프	취수펌프	01/02/03/04	부속품
	MTBF			순환펌프		소모품
	UF			부스터펌프		기타
	RO			고압펌프		
	Remin		벨브	유입벨브		
	자체창고			유출벨브		
	중앙제어실			by-pass 벨브		
	기타			배수벨브		
				체크벨브		
		(5) 전기설비	수변전설비	수전설비		
				배전설비		
		(6) 제어계측설비	제어반	현장전동기제어반		
				현장제어반		
				현장로컬제어반		
				기능별제어반		
			계측장치	유량계		
				수위계		
				탁도계		
				온도계		
				pH계		
				전기전도도계		
				잔류염소계		
			운영시스템	System 장비		
				Server 장비		
				모니터		
				OA 장비		
			cctv설비			

(4) 자산코드는 Level으로 분류된 각 항목들에 대해서 부여하는 것으로 중복이 존재 하지 않으며 각 항목을 구분할 수 있는 유일한 코드가 됨. 이때 각 Level에 대한 정보를 포함하기 위해서 2개의 영문자로 구성된 코드를 사용함. 각 Level의 명칭 을 영문으로 변경하였을 때의 2개의 문자를 사용함. Level 1의 Intake Facility의 경우 I와 F로 구성된 IF를 사용함. 완제품으로 구성되는 해수 취수펌프의 경우 Level 6까지의 정보를 포함하는 자산코드가 부여되며, 취수펌프의 O-Ring의 경우 Level 7의 분류까지 포함하는 자산코드가 부여됨.

- 88 -

### 표 46. 해수 취수펌프와 취수펌프에 포함되는 O-Ring에 대한 자산 코드(a)

	취수			펌프	
Loval 1	Intake		Loval 4	Dump	
Level 1	Facility		Level 4	Fullip	
	IF			PP	
	취수펌프			취수펌프	
Loval 2	Pumping		Loval 5	Intake	
Level 2	Station		Level 5	Pump	
	PS			IP	
	기계 설비			01	
Level 3	Machine		Level 6	-	
	MC			-	
			Level 7	-	
			자산코드	IFPSMCPPIP01	
			기사이르	해수	
			사산이금	취수펌프1	
	취수			펌프	
Level 1	Intake		Level 1	Pump	
Level 1	Facility		Level 4	i unp	
	IF			PP	
	취수펌프 Pumping			취수펌프	
Loval 9			Loval F	Intake	
Level 2	Station		Level 5	Pump	
	PS			IP	
	기계 설비			소모품	
Level 3	Machine		Level 6	O-Ring	
	MC			OR	
			Level 7	01	
			자산코드	IFPSMCPPIPOR01	
			자산이름	취수펌프 오링1	

(5) 자산에 대해서 표 46.에 제시된 정보들에 대해서 저장함. 이때, 표 46.는 Level 7 까지 분류된 자산에 대해서 저장하는 정보이며. 자산의 정보가 의미하는 바는 다 음과 같음

자산 이름 : 자산의 명칭
자산코드 : LEVEL 1~7까지의 정보
도엽번호 : 설계 도면 상의 번호
설치위치 : 설치 장소 정보, 해수담수 공정 내 공정 별 분류
제조사 : 해당 자산의 제조사
제조사 연락처 : 해당 자산의 제조사의 연락처
제조 일자 : 해당 자산의 제조 일자
취득 일자 : 해당 자산의 설치 일자.
모델명 : 해당 자산에 대한 제조사 고유의 모델 명칭
규격/사양 : 해당 자산의 사양서에 나온 크기 및 제품 정보
제품 종류 : 제품에 대한 속성 기입
관리 기관/관리자 이름 : 운영주체기관 및 관련 부서의 책입자급으로 설정
관리자 연락처 : 관리기관 담당자의 전화번호
재료비/부대원가 : 해당 자산 자체에 대한 물품 자재비/재료비를 제외한 설치와
제경비
취득원가 : 재료비 및 부대원가를 모두 포함한 해당 자산의 총 설치 비용
현존가치 : 취득원가 - 감가상각누계액
법정내용연수 : 해당 자산의 설계 수명
감가상각비율 : 법정내용연수에 따라 차등 삭감되는 비율
수량 : 제품의 개수 (설치된 개수와 여분 개수 기입)
비고 : 자산에 대한 특이사항 기입

표 47. 해수 취수펌프와 취수펌프에 포함되는 O-Ring에 대한 자산 코드(b)

AS_NAME	자산이름	MOD_NAM	모델명	ACQ_AMT	취득원가
AS_CODE	자산코드	MOD_SPC	규격/사양	PRS_AMT	현존가치
	ㄷ여ㅐㅎ		제품		법정
JIII_NOM	그님킨오	FRD_CDE	종류		내용연수
IST COP	서키이키	MNG CDE	관리		감가상각
101_COK	코지키지	WINO_CDE	기관	IXA1_AMI	비율
MNE COM	계즈시	MNG NAM	관리자		스랴
	세요가		이름	FILD_ANT	1 0
MNE NUM	제조사	MNG NUM	관리자	NOTE	ਸੀ ਹ
	연락처	IVIINO_INUIVI	연락처	NOTE	비고스
MNF_YMD	제조 일자	MAT_AMT	재료비		
ACQ_YMD	취득 일자	SUB_AMT	부대원가		

(6) 상세 분류에 해당하는 Level 7에 대해서는 별도의 표를 이용하며, 저장되는 정보는 Level 6에 비해서 세분화된 정보를 포함함. 완제품을 구성하는 부품이기 때문에 도면에 대한 정보 및 도면 상에서 부품이 위치하는 정보를 저장함. 또한 부품의 수와 소재에 대한 정보를 포함함. 플랜트의 운전에서 가장 중요한 요소는 service interval에 대한 부분으로, service interval 제조사가 보증하는 해당 부품에 대한 운전 시간을 의미함. 해당 항목이 제일 중요한 이유는 자산을 완제품으로 구매한 이후 유지보수를 위해서는 문제가 생기는 부분은 교체하는 작업을 진행하기 때문임.

도면 상 위치 : 해당 부품의 도면상의 위치
도면 : 완제품에 대한 도면
부품수 : 완제품에 포함되는 해당 부품의 수
부품 설명 : 완제품에서의 부품의 역할 혹은 명칭
소재 : 부품의 소재 정보
Service Interval : 제조사가 보증하는 운전 시간
교체 후 운전 시간 : 부품의 교체 후 자산의 운전 혹은 사용 시간 정보

#### 표 48. Level 7까지 분류되는 부품에 대한 저장 정보 및 펌프에 대한 예시

PART_	PART_	PART_	PART DES	PART MAT	PART SI	PART_
POS	IMG	QTY				OPER
도면					- ·	교체
상	도면	도면 부품수 부품 석명		소재	Service	우
위치	_		,		Interval	운전시
11.1						간
1		1	Housing, main	Duplex PEEK	No need for	
*		<u> </u>	bearing		service	
31		1	Swash plate	Super Duplex	40,000 hours	
66		Q	Piston	Super Duplex	1 veor	
00		3	I ISTOIL	and PEEK	1 year	
92		1	Valve plate	Super Duplex	24,000 hours	
01		1	Dort plata	Super Duplex,	24.000 hours	
91		1	Port plate	PEEK	24,000 110015	
61		1	Cylinder barrel	Super Duplex	40,000 hours	
65		1	Retainer plare	Super Duplex	24,000 hours	
64		1	Retainer ball	Super Duplex	40,000 hours	
71		1	Retainer guide	Super Duplex	40,000 hours	
62		1	Spring	Duplex	40,000 hours	
63		1	Spring guide	Duplex or PP	40,000 hours	
194		1	Shoft cool	Hastelloy and	after each	
124		T	Shart Seal	NBR	disassembly	
93		9	Back-up ring	PTFE	24,000 hours	
*		1	O-ring (overall)	NBR	24,000 hours	
150		Valve cone	Duplex or	40.000 hours		
192		2	(flushing valve)	PEEK	40,000 Hours	
67		1	Key	AISI 316	40,000 hours	

## 제 3 장 결 론

### 3.1 해수담수화플랜트 저전력·저비용 운영관리 기술 개발

- 가. DAF 공정 최적 운영조건 도출을 위해 다양한 운전조건(포화기 압력, 순환율, 응집제 주입량)에서 처리효율을 비교한 결과, 실험을 진행한 대산지역 해수 원 수 조건에서는 응집제 주입률 2 ppm, 포화기 압력 5 bar 조건이 적절하며 순 환율은 처리수질에 영향이 거의 없는 것을 확인함
- 나. 침지식 UF 공정 최적 운영조건 도출을 위해 다양한 운전조건(막여과유속, 회수 율, 2단 브로워 가동조건)에서 처리효율을 비교한 결과, 총 회수율 99%(1단 90%, 2단 90%) 조건으로 운전하는 것이 유리한 것을 확인함. 막여과유속 증가 에 따른 처리수질 저하는 없었으나 최적 막여과유속 결정을 위해서는 장기간 운전을 통해 차압 및 CIP 주기 비교가 필요함. 또한, 2단 브로워 가동 시간 감 소(30/30→30/90)에도 처리수질 변화가 거의 없기 때문에 30/90 조건에서 운전 하는 것이 적합함
- 다. 국내 T/B DAF 운전 데이터를 활용하여 운영 프로그램 최적화 모듈의 DAF 모 델 경험식 파라미터 검·보정을 완료함
- 라. 국내 T/B DAF 및 침지식 UF 운영데이터를 이용하여 시설 용량별 SEC 변화를 계산한 결과, 100,000 m³/d 시설 기준으로 DAF는 약 0.105 kWh/m³, 침지식 UF 는 약 0.068 kWh/m³ 수준으로 예측됨
- 마. UAE 해수담수 파일럿 플랜트 운영을 위해 기본운영 기능과 단위공정 운영 최
   적화 기능을 탑재한 통합 운영프로그램 제작을 완료함. 또한, 고압펌프 이상
   진단 및 해수담수플랜트 자산관리를 위한 모듈을 추가로 구축함

### 3.2 담수화 공정 수압시스템 최적화 기술 및 에너지맵핑 시스템

가. 해수담수플랜트 배관 설계 효율성 향상을 위하여 시설 규모에 따라 해석이 가
 능한 해수담수플랜트 전용 수압시스템 해석 소프트웨어를 개발함

나. UAE 해수담수 파일럿 플랜트 적용을 위하여 실시간 에너지 측정·분석기술을

개발하였으며, 원수 수질조건 변화에 따라 표준화를 통해 에너지 소모의 기준 값을 산정하여 적용함

### 3.3 고압펌프 이상진단 및 해수담수플랜트 자산관리 로직 구축

- 가. 국내 T/B RO 공정 운전 데이터를 활용하여 정유량 방식 RO 공정 모델의 파라 미터(수투과도, 염투과도, fouling potential)를 검·보정하였으며, 이를 적용하여 RO 공정 분리막 세정·교체에 따른 성능변화 및 운영관리비용에 대한 시나리 오 분석을 수행함
- 나. 국내 T/B RO 공정 고압펌프에 진동계를 설치하여 확보한 데이터를 바탕으로 칼만필터-머신러닝 기반의 고압펌프 이상 진단 알고리즘을 개발함
- 다. 해수담수플랜트 자산관리를 위한 로직을 구축하였으며, UAE 파일럿 플랜트 설 계·구축 일정에 따라 자산관리의 상세 DB 구축은 추후 보완될 예정임

# 참고문헌

- Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T., "State-of-the-art of reverse osmosis desalination, Desalination", 216, 1-76. 2007.
- Guigui, C., Rouch J. C., Durand-Bourlier L., Bonnelye V. and Aptel P., "Impact of coagulation conditions on the in-line coagulation UF process for drinking water production", Desalination, 147, 95-100. 2002.
- Hwang M. H. and Kim I. S., "Comparative Analysis of Seawater Desalination Technology in Korea and Overseas", J. Korean Soc. Environ. Eng., 38(5), 255-268. 2016.
- Knops F., Hoof S., Futselaar H. and Broens L., "Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis", Desalination, 203, 300–306, 2007.
- 5) Ma, W., Zhao Y., Wanga, L., "The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis.", Desalination, 203, 256–259, 2007.
- Amirtharajah, A. and O' Melia, C. R., "Coagulation process : destabilization, mixing, and flocculation.", In Water Quality and Treatment, 4th Ed., McGraw-Hill, NY., 1990.
- Baker, R. W., "Membrane Technology and Applications." John Wiley & Sons, Ltd., Chichester., 2004.
- Bonnelye, V., Sanz M. A., Durand J. P., Plasse L., Gueguen F. and Mazounie P., "Reverse osmosis on open intake seawater: pre-treatment strategy", Desalination, 167, 191-200., 2004.

- Choksuchart, P., HéranM., Grasmick A., "Ultrafiltration enhanced by coagulation in an immersed membrane system", Desalination, 145, 265–272, 2002.
- Edzwald, J. K., Haarhoff, J., "Seawater pretreatment for reverse osmosis: Chemistry, contaminants, and coagulation", water research, 45, 5428-5440, 2011.
- Subramani, A. and Jacangelo, J. G., "Emerging desalination technologies for water treatment: A critical review". Water research, 75, pp. 164~187, 2015
- 12) "Desalination Markets", Global Water Intelligence, 2016
- "Budget justifications", US department of Interior, Breau of Reclamation, 2015
- James K. Edzwald, "Dissolved air flotation and me", Water research, 44, pp. 2077~2106, 2010.
- Wang Hui, "Application of dissolved air flotation on separation of waste plastics ABS and PS" Waste Management, 32, pp. 1297~1305, 2012
- 16) J. Behin, "Modeling an industrial dissolved air flotation tank used for separating oil from wastewater" Chemical Engineering and Processing, 59, pp. 1~8, 2012
- 17) K. L. Chen, L. Song, S. L. Ong, W. J. Ng, "The development of membrane fouling in full-scale RO processes", Journal of membrane science, 232 (1), 63–72., 2014.
- 18) Y. G. Lee, Y. S. Lee, D. Y. Kim, M. Park, D. R. Yang, J. H. Kim, "A fouling model for simulating long-term performance of SWRO desalination process", Journal of membrane science, 401-402, 282-291, 2012.

- 19) D. Y. Kim, M. H. Lee, S. Lee, J. H. Kim, D. R. Yang, "Online estimation of fouling development for SWRO system using real data", Desalination, 247, 200–209, 2009.
- 20) A. Ghobeity, A. Mitsos, "Optimal time-dependent operation of seawater reverse osmosis", Desalination, 263, 76-88, 2010.
- A. Zilouchian, M. Jafar, "Automation and process control of reverse osmosis plants using soft computing methodologies", Desalination, 135, 51–59, 2001.
- 22) K. L. Chen, L. Song, S. L. Ong, W. J. Ng, "The development of membrane fouling in full-scale RO processes", Journal of membrane science, 232 (1), 63-72, 2004.
- 23) Y. G. Lee, Y. S. Lee, D. Y. Kim, M. Park, D. R. Yang, J. H. Kim, "A fouling model for simulating long-term performance of SWRO desalination process", Journal of membrane science, 401-402, 282-291, 2012.
- 24) D. Y. Kim, M. H. Lee, S. Lee, J. H. Kim, D. R. Yang, "Online estimation of fouling development for SWRO system using real data", Desalination, 247, 200–209, 2009.
- 25) A. Ghobeity, A. Mitsos, "Optimal time-dependent operation of seawater reverse osmosis", Desalination, 263, 76-88, 2010.

# 참여연구원현황

연구원	참 여 내 역	비고
		- ′18.1 ~ ′18.12
	○연구총괄	- K-water융합연구원
		맑은물연구소
		- 042-870-7500
		- ′18.1 ~ ′18.12
	│ ○구내 T/R 저처리 대아고저 치저 우여조거 도추	- K-water융합연구원
		맑은물연구소
		- 042-870-7520
		- ′18.1 ~ ′18.12
	○해수담수화 운영프로그램 내 모듈 추가 구성	- K-water융합연구원
	○해수담수화 운영프로그램 수정·보완	맑은물연구소
		- 042-870-7526
		- ′18.1 ~ ′18.3
	○국내 T/B 전처리 대안공정 최적 운영조건 도출	- K-water융합연구원
		맑은물연구소
		- 042-870-7532
		- ′18.1 ~ ′18.3
	ㅇ 해수담수화 운영프로그램 시운전	- K-water융합연구원
		맑은물연구소
		- 042-870-7534
	○단위공정 모델 파라미터 검·보정 ○해수담수화 운영프로그램 수정·보완	- '18.1 ~ '18.12
		- K-water융합연구원
		맑은물연구소
		- 042-870-7544
	ㅇ개발기술 국내 활용방안 모색	$-18.9 \sim 18.10$
		- 퇴직 - '18.1 ~ '18.3
	ㅇ개발기술 홍보	- 과즈스드과리다
		8구구 <u>고</u> 린디딘 021 760 0700
		$-$ '18.4 $\sim$ '18.12
	   ㅇ개발기술 홍보	- 맑은물기획처
		- 042-629-3281
		- '18.1 ~ '18.12
	ㅇ개발기술 대산 사업장 적용방안 모색	- 서산권지사
		- 041-689-0120
	ㅇ개발기술 대산 사업장 적용방안 모색	- ′18.1 ~ ′18.12

		- 서산권지사
		- 041-689-0131
		- '18.1 ~ '18.12
	ㅇ개발기술 국내 활용방안 모색	- 맑은물기획처
		- 042-629-3287
		- '18.1 ~ '18.12
	ㅇ개발기술 국내외 사업장 적용방안 모색	- 수도권수도사업
		단
		- 031-270-9335
		- '18.1 ~ '18.12
	ㅇ개발기술 중동지역 활용방안 모색	- 인재경영처
		- 042-629-2734
		- '18.4 ~ '18.12
	ㅇ개발기술 국내 활용방안 모색	- 맑은물기획처
		- 042-629-3288
		- '18.1 ~ '18.12
	ㅇ개발기술 당진 사업장 적용방안 모색	- 아산권지사
		- 041-539-4311
		- '18.1 ~ '18.12
	ㅇ국내 T/B 전처리 대안공정 최적 운영조건 도출	- K-water융합연구원
		맑은물연구소
		- 042-870-7517
	○해수담수화 운영프로그램 시운전	- '18.4 ~ '18.12
		- K-water융합연구원
		- 042-870-7685
		- '18.1 ~ '18.12
	○실험실 규모 해수담수화 공정 실험	- K-water융합연구원
		맑은물연구소  
		- 042-870-7513
	○해수담수화 운영프로그램 코딩	- '18.1 ~ '18.3
		- 퇴직
		- 10.4 ~ 10.12
	○대산 해수담수화 T/B 운영	- K-water융압연구원
		밝은물연구소
		- 042-870-7536
		- 18.6 ~ 18.12
	○해수담수화 운영프로그램 코딩 - K-wa 맑은물 - 042	- K-water퓽합연구원
		밝은불연구소
		- 042-870-7536

# 서지자료

(1) 출판물 고유번호	(2) 사업분류	(3) 발행일
KIWE-WWRC-18-10	기술개발	2019.1
(4) 제목/부제		(5) 연구기간
해수담수화플랜트 저전	력/저비용 운영관리 지능형 플	2016.6.~2020.6(총)
랫폼 기술개발(3차년도)		2018.1.~2018.12(당해)
(6) 연구수행기관		(7) 연구 수행자(소속)
한국수자원공사, K-water	연구원 맑은물연구소	임재림 등 22인
(8) 수행기관 주소		(9) 연구의뢰기관 및 주소
대전광역시 유성구	유성대로 1689번길 125	한국환경산업기술원
(10) 공동 수행기관		(11) 계약 또는 인가번호
광주과학기술원, 국덕	민대학교	
(12) 초록		

기후변화, 인구 증가 및 산업화로 인해 물 부족 현상이 심화되고 있으며 이를 해결하기 위하여 대체 수자원 확보가 필요하다. 그 중 대표적인 기술이 해수담 수화로 과거 증발식에서 현재 상대적으로 에너지 소모가 낮은 RO 방식으로 재 편되어 있으나, 경제성 향상을 위해 추가적으로 에너지 소모를 절감할 수 있는 기술 개발이 요구되고 있다. 따라서 본 연구에서는 해수담수화플랜트의 저에너 지·저비 운영을 위한 기술을 확보하고자 한다.

대산 지역에 구축한 해수담수 모형플랜트 운영을 통해 각 단위공정별 수질분석 을 수행하였을 뿐 아니라 DAF 및 침지식 UF 공정의 최적 운전조건을 도출하였 으며 에너지 소모를 분석하여 스케일업 시의 에너지 소모 변화를 예측하였다. 또한, 모형플랜트 DAF 운전 데이터는 DAF 공정 모델의 경험식 파라미터를 검· 보정하는 데에 활용되었다.

UAE 해수담수 파일럿플랜트 운영을 위하여 단위공정의 기본 운영과 최적 운영 조건 제시 기능을 포함한 i-water 기반의 운영프로그램을 제작 완료하였으며, 진동 모니터링을 통해 고압 펌프의 이상을 진단하는 기능과 효율적인 플랜트 유 지관리를 위한 자산관리 기능을 추가로 구축하였다.

#### (13) 키-워드 해수단수 유영유지관리 최적화, 저처리, 유영프로그램

ſ	(14) 사업고유번호					
	M170023					
ľ	(15) 공개여부	(16) 총면수	(17) 발행부수	(18) 가격		
	ର୍ଦ୍ଧ					

### **BIBLIOGRAPHIC DATA SHEET**

(1) Report ID	(2) Project Classif	ication	(3) Report Dat	te
KIWE-WWRC-18-10	Evolution		Jan. 31, 20	019
(4) Title/Subtitle		(5) Rese	arch Period	
Development of the	e O&M platform	2016.6.4	~2020.6(Total)	
technology for low-en seawater desalination p	ergy and low-cost blant(3rd year)	2018.1	~2018.12(Current	year)
(6) Performing Organiz	ation	(7) Auth	or(s)	
Water Works Research Ce	nter, KIWE, K-water	Lim a	nd 21 others	
(8) Performing Organiz	ation Address	(9) Spon	soring Agency	and address
125,yuseong-daero	Korea	Environmental	Industry &	
Yuseong-gu, Daejeo	Technolo	gy Institute		
(10) Co-performing O	rganization(s)	(11) Cor	ntract or Author	rization
Gwangju Institute	of Science and			
Technology(GIST), Ko	okmin University			
(12) Abstracts				

Climate change may affect the global hydraulic cycle and thus exacerbate the regional freshwater accessibility. To cope with the water shortage, seawater desalination is considered one of the promising alternatives. RO process is widely applied due to relatively lower energy consumption than thermal desalination processes, however, technology to further reduce the energy consumption is required for improving feasibility. Therefore, the objective of this project is to develop the low-energy and low-cost operation technology for the seawater desalination plant.

By operating the Daesan desalination pilot plant, water quality analysis of unit processes was conducted as well as optimal operation conditions of DAF and submerged-UF process were derived. In addition, specific energy consumption of different DAF and submerged-UF capacity was estimated based on the Daesan operation data. DAF operation data was also used to verify the parameters of the DAF process model.

In order to efficiently operate the UAE desalination pilot plant, development of the i-water based operation program which contains the functions of suggesting the optimal operation conditions of unit processes as well as operating conventional way was completed. Furthermore, algorithms to diagnose the abnormality of high-pressure pump by vibration sensors and to manage the assets of desalination plant were developed and applied into the operation program as specified modules.

#### (13) Keyword

Seawater desalination, O&M, Optimization, Pre-treatment, Operation program
(14) Project ID

#### M170023

(15) Security	(16) No. of Pages	(17) Circulation	(18) Price
Yes			

**주의사항** 본 보고서의 저작권은 K-water에 있으므로, 본 자료의 내용을 허가없이 인용, 복사, 전재, 재배포를 할 경우 법적 제재를 받을 수 있습니다.

> Copyright © 2019 by K-water

발행인 : K-water 사장 이학수 발행일 : 2019 . 1 . 발행처 : 한국수자원공사 K-water연구원 대전광역시 유성구 유성대로 1689번길 125 Tel. (042) 870-7005